Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.00418
Polímeros: Ciência e Tecnologia
Original Article

PET glycolysis optimization using ionic liquid [Bmin]ZnCl3 as catalyst and kinetic evaluation

Silva, Carlos Vinícius Guimarães; Silva Filho, Eloi Alves da; Uliana, Fabrício; Jesus, Luciana Fernanda Rangel de; Melo, Carlos Vital Paixão de; Barthus, Rosangela Cristina; Rodrigues, José Guilherme Aquino; Vanini, Gabriela

Downloads: 1
Views: 1037

Abstract

Abstract: In the present work, the depolymerization of polyethylene terephthalate (PET) was performed by the method of glycolysis with ethylene glycol. The process was carried out using a factorial design in the Box-Behnken optimization model, using a response surface methodology (RSM) in which three factors (time, temperature and mass ratio of ethylene glycol) were studied in three levels of variation (- 1, 0, +1) with two replicates of the center point, totalizing 15 experiments for which the yield of bis (2-hydroxyethyl) terephthalate (BHET) monomers formed in the process was chosen as response. In parallel, the Arrhenius kinetic test was used to determine the apparent activation energy (Ea) for the 1-butyl-3-methylimidazole trichlorozincate ([Bmin]ZnCl3) - catalyst used in the depolymerization process. The products of glycolysis obtained were characterized by spectroscopic techniques (FTIR), (1 H and 13C NMR), thermal analyses (TGA) and (DSC) and Mass Spectrometry LC-MS/MS hybrid Quadrupole-Orbitrap.

Keywords

PET; glycolysis; ionic liquids; design of experiments; activation energy energy

References

Whinfield, J. R., & Dickson, J. T. (1946). UK Patent No. 578079. London: British Patent to ICI Ltd. 

Macdonald, W. A. (2002). New advances in poly (ethylene terephthalate) polymerization and degradation. Polymer International51(10), 923-930. http://dx.doi.org/10.1002/pi.917. 

Romão, W., Spinacé, M. A. S., & De Paoli, M.-A. (2009). Poli(tereftalato de etileno), PET: uma revisão sobre os processos de síntese, mecanismos de degradação e sua reciclagem. Polímeros: Ciência e Tecnologia19(2), 121-132. http://dx.doi.org/10.1590/S0104-14282009000200009. 

Bartolome, L., Imran, M., Cho, B. G., Al-Masry, W. A., & Kim, D. H. (2012). Recent development in the chemical recycling of PET. In D. S. Achilias. Material recycling - trends and perspectives (pp. 65-84). London: Headquarters. http://dx.doi.org/10.5772/33800. 

Wang, Q., Yao, X., Tang, S., Lu, X., Zhang, X., & Zhang, S. (2012). Urea as an efficient and reusable catalyst for the glycolysis of poly(ethylene terephthalate) wastes and the role of hydrogen bond in this process. Green Chemistry14(9), 2559-2566. http://dx.doi.org/10.1039/c2gc35696a. 

Kathalewar, M., Dhopatkar, N., Pacharane, B., Sabnis, A., Raut, P., & Bhave, V. (2013). Chemical recycling of PET using neopentyl glycol: Reaction kinetics and preparation of polyurethane coatings. Progress in Organic Coatings76(1), 147-156. http://dx.doi.org/10.1016/j.porgcoat.2012.08.023. 

Mancini, S. D., & Zanin, M. (2015). Resíduos plásticos e reciclagem: aspectos gerais e tecnologia. 2ª ed. São Carlos: EdUFSCar. http://dx.doi.org/10.7476/9788576003601. 

Troev, K., Grancharov, G., Tsevi, R., & Gitsov, I. (2003). A novel catalyst for the glycolysis of poly(ethylene terephthalate). Journal of Applied Polymer Science , 90(8), 1148-1152. http://dx.doi.org/10.1002/app.12711. 

Al-Sabagh, A. M., Yehia, F. Z., Eissa, A. M. F., Moustafa, M. E., Eshaq, G., Rabie, A. M., & ElMetwally, A. E. (2014). Cu and Zn acetate containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate). Polymer Degradation & Stability , 110, 364-337. http://dx.doi.org/10.1016/j.polymdegradstab.2014.10.005. 

Yue, Q. F., Yang, H. G., Zhang, M. L., & Bai, X. F. (2014). Metal-containing ionic liquids: highly effective catalysts for degradation of poly(ethylene terephthalate). Advances in Materials Science and Engineering2014(1), 1-6. http://dx.doi.org/10.1155/2014/454756. 

Baliga, S., & Wong, W. T. (1989). Depolymerization of poly(ethylene terephthalate) recycled from post-consumer soft-drink bottles. Journal of Polymer Science. Part A, Polymer Chemistry27(6), 2071-2082. http://dx.doi.org/10.1002/pola.1989.080270625. 

American Society for Testing and Materials – ASTM. (2016). ASTM D4274-16: standard test methods for testing polyurethane raw materials: determination of hydroxyl numbers of polyols. West Conshohocken: ASTM. http://dx.doi.org/10.1520/D4274-16. 

Kao, C. Y., Cheng, W. H., & Wan, B. Z. (1997). Investigation of catalytic glycolysis of polyethylene terephthalate by differential scanning calorimetry. Thermochimica Acta292(1-2), 95-104. http://dx.doi.org/10.1016/S0040-6031(97)00060-9. 

Wang, H., Liu, Y., Li, Z., Zhang, X., Zhang, S., & Zhang, Y. (2009). Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. European Polymer Journal , 45(5), 1535-1544. http://dx.doi.org/10.1016/j.eurpolymj.2009.01.025. 

American Society for Testing and Materials – ASTM. (2011). ASTM D4603-03: standard test method for determining inherent viscosity of poly(Ethylene Terephthalate) (PET) by glass capillary viscometer. West Conshohocken: ASTM. https://doi.org/10.1520/D4603-03R11E01. 

Yue, Q. F., Wang, C. X., Zhang, L. N., Ni, Y., & Jin, Y. X. (2011). Glycolysis of poly(ethylene terephthalate) (PET) using basic ionic liquids as catalysts. Polymer Degradation & Stability96(4), 399-403. http://dx.doi.org/10.1016/j.polymdegradstab.2010.12.020. 

Yang, Y.-L., & Kou, Y. (2004). Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chemical Communications2004(2), 226-227. http://dx.doi.org/10.1039/b311615h. PMid:14737561. 

Yue, Q. F., Xiao, L. F., Zhang, M. L., & Bai, X. F. (2013). The glycolysis of poly(ethylene terephthalate) waste: lewis acidic ionic liquids as high efficient catalysts. Polymers5(4), 1258-1271. http://dx.doi.org/10.3390/polym5041258. 

Montgomery, D. C. (2013). Design and analysis of experiments. 8 a ed. New York: John Wiley & Sons.

Novaes, C. G., Yamaki, R. T., Paula, V. F., Nascimento, B. B., Jr., Barreto, J. A., Valasques, G. S., & Bezerra, M. A. (2017). Otimização de métodos analíticos usando metodologia de superfícies de resposta - Parte I: variáveis de processo. Revista Virtual Quimica9(3), 1284-1215. http://dx.doi.org/10.21577/1984-6835.20170070. 

Ernö, P., Bühlmann, P., Badertscher, M. (2009). Structure determination of organic compounds - tables of spectral data. Basel: Springer Nature Switzerland AG. http://dx.doi.org/10.1007/978-3-540-93810-1. 

Breitmaier, E., & Voelter, W. (1990). Carbon 13 NMR spectroscopy: high-resolution methods and applications in organic chemistry and biochemistry. 3rd ed. New York: VCH. 

Al-Sabagh, A. M., Yehia, F. Z., Eissa, A.-M. M. F., Moustafa, M. E., Eshaq, G., Rabie, A.-R. M., & ElMetwally, A. E. (2014). Glycolysis of poly(ethylene terephthalate) catalyzed by the lewis base ionic liquid. Industrial & Engineering Chemistry Research , 53(48), 18443-18451. http://dx.doi.org/10.1021/ie503677w. 

Chen, F., Zhou, Q., Bu, R., Yang, F., & Li, W. (2015). Kinetics of poly(ethylene terephthalate) fiber glycolysis in ethylene glycol. Fibers and Polymers16(6), 1213-1219. http://dx.doi.org/10.1007/s12221-015-1213-4. 

Chen, J.-W., Chen, L.-W., & Cheng, W.-H. (1999). Kinetics of glycolysis of polyethylene terephthalate with zinc catalyst. Polymer International, 48(9), 885-888. http://dx.doi.org/10.1002/(SICI)1097-0126(199909)48:9<885::AID-PI216>3.0.CO;2-T. 

Campanelli, J. R., Kamal, M. R., & Cooper, D. G. (1994). Kinetics of glycolysis of poly(ethylene terephthalate) melts. Journal of Applied Polymer Science54(11), 1731-1740. http://dx.doi.org/10.1002/app.1994.070541115. 

Liu, Q., Li, R., & Fang, T. (2015). Investigating and modeling PET methanolysis under supercritical conditions by response surface methodology approach. Chemical Engineering Journal270, 535-541. http://dx.doi.org/10.1016/j.cej.2015.02.039. 

Pereira, E. R., Fo. (2015). Planejamento fatorial em química: maximizando a obtenção de resultados. São Carlos: EdUFSCar. 

Barros, B., No., Scarminio, I. E., & Bruns, R. E. (2010). Como fazer experimentos: aplicações na ciência e na indústria, 4th ed. Porto Alegre: Bookman. 

5c55bab90e88250c14b25bb3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections