Simulação da Extrusão de PEAD e de Blendas de PEAD/PELUAPM Utilizando Diferenças Finitas

Rosario E. S. Bretas e Carlos J. F. Granado*

É

N

C

0

C

Π

E

Ν

Í

Π

С

0

Resumo: A equação constitutiva de Criminale-Ericksen-Filbey (CEF) foi utilizada para calcular o ponto de operação para a extrusão de polietileno de alta densidade (PEAD) de diferentes pesos moleculares e de suas blendas com polietileno linear de ultra alto peso molecular (PELUAPM). A viscosidade dependente da taxa de cisalhamento e o coeficiente da primeira diferença de tensões normais foram obtidos a partir de dados experimentais de um reômetro capilar. A equação característica da rosca foi calculada utilizando o método de diferenças finitas centrais. Para comparar, essa equação foi também calculada utilizando a equação da lei das potências. A equação característica da matriz foi obtida a partir da lei das potências. À temperaturas menores, a equação de CEF proporcionou melhores resultados.

Palavras-Chave: Extrusão, blendas, equações reológicas de estado.

INTRODUÇÃO

A elasticidade do fundido é de extrema importância em processamento de polímeros, especialmente na moldagem a sopro, fiação e outros processos relacionados à extrusão [1,2]. Entretanto, para a simulação desses processos o uso de equações constitutivas viscoelásticas [3,4] requer longos cálculos e a utilização de parâmetros essencialmente teóricos. Assim, equações empíricas como a da lei das potências [5] e de ajuste polinomial [6] ainda são utilizadas na simulação do comportamento do polímero fundido a altas taxas de cisalhamento, devido a sua simplicidade.

Neste trabalho utilizamos uma equação reológica de estado, a equação de CEF [7], para o cálculo do ponto de operação teórico de uma extrusora de rosca única, assumindo condições isotérmicas [8],

$$\tau = -\eta \dot{\gamma} - (1/2 \psi_1 + \psi_2) \{ \dot{\gamma} \cdot \dot{\gamma} \} + 1/2 \psi_1 \frac{U \dot{\gamma}}{D t}$$
(1)

onde:

 $\tau = tensão;$

 $\dot{\gamma}$ = taxa de cisalhamento;

 η = viscosidade em cisalhamento;

 $\psi_{\rm 1}$ = coeficiente da primeira diferença de tensões normais;

 ψ_2 = coeficiente da segunda diferença de tensões normais:

t = tempo

 $\frac{D}{Dt}$ = derivada de Jaumann.

Essa equação engloba, simplificadamente, o comportamento viscoelástico característico de polímeros fundidos. Para a simulação, foram utilizados três PEAD de diferentes pesos moleculares e uma blenda 9/1 do PEAD 1 / PELUAPM. Os dados reológicos experimentais foram empregados para calcular os parâmetros dessa equação e o método de diferenças finitas central para resolver as equações dinâmicas de conservação de quantidade de movimento.

EXPERIMENTAL

Propriedades dos polímeros

Rosario E. S. Bretas Departamento de Engenharia de Materiais-Universidade Federal de São Carlos 13560 São Carlos, SP **Carlos** J. F. Granado * Departamento de Engenharia de Materiais-Universidade Estadual de Ponta Grossa 84010 Ponta Grossa, PR. (mandar correspondência para*)

Polímeros: Ciência e Tecnologia – Jul/Set-92

A Tabela I apresenta o peso molecular médio ponderal (\overline{M}_W) e numérico (\overline{M}_{η}) , e a distribuição de pesos moleculares (DPM = $\overline{M}_W/\overline{M}_{\eta}$) dos PEAD e PELUAPM (Polialden Petroquímica S.A.).

TABELAI							
Polímero	M _w	M _n	DPM				
PEAD1	75540	13965	5,41				
PEAD 2	110376	17082	6,49				
PEAD 3	161670	14721	10,65				
PELUAPM	3,5-4.106	-					

Dados reológicos

A viscosidade em cisalhamento η e o inchamento do extrudado $\beta = D / D_c$, onde $D = diâmetro do extrudado e <math>D_c$ = diâmetro do capilar, foram obtidos num Reômetro Capilar Instron, modelo 3211, usando capilares com $L/D_c \rightarrow \infty$, sendo L = comprimento do capilar. O inchamento do extrudado foi medido após o recozimento em óleo de silicone (Dow Corning 200/5, $\rho = 0.92$ g/cm³) a 130 $\pm 2^{\circ}$ C para os PEAD e 140 $\pm 2^{\circ}$ C para as blendas durante 25 minutos. Para evitar perda de massa dos polímeros durante o recozimento, foi adicionado ao óleo de silicone um antioxidante, Irganox 1010 [3-(3,5 di-tert.butil – 4 – dihidroxifenil) propianato]. Por análise de infravermelho foi confirmada a ausência do óleo nas amostras poliméricas (1100-1000 cm⁻¹, banda de Si-O) e do polímero no óleo (2920, 2850, 1470, 1460, 730 e 720 cm⁻¹, vibrações de CH₂).

O coeficiente da primeira diferença de tensões normais, $\psi_{,}$ foi calculado a partir da equação de Tanner [9],

 $\beta = 0.1 + (1 + 1/2 S_{B}^{2})^{1/6}$ ⁽²⁾

onde:

 $S_{B} = (\tau_{11} - \tau_{22})/2\tau_{12}$ (cisalhamento recuperável),

sendo que:

$$\psi_1 = (\tau_{11} - \tau_{22})/\dot{\gamma}_{21}^2$$

Extrusão

Fig.1 - Geometria da rosca da extrusora

A vazão experimental Q e a queda de pressão ΔP foram medidas numa extrusora de rosca única (Pugliese) como mostrado na Figura 1, com as seguintes especificações:

 $\begin{array}{l} D_s = di \hat{a} metro \ da \ rosca = 4,5 \ cm; \\ L_s = comprimento \ da \ rosca = 108 \ cm; \\ B = profundidade \ do \ canal = 0,4 \ cm; \\ \Theta = \hat{a} ngulo \ da \ hélice = 17^\circ; \\ w = largura \ do \ canal \ da \ rosca = 3,75 \ cm. \end{array}$

A matriz possuia um diâmetro d = 0,31 cm e comprimento L_m = 2,99 cm. A rotação da rosca N variou entre 5-70 rpm.

Simulação

Para a aplicação da equação de CEF, o canal helicoidal da rosca foi "desenrolado" como mostrado na Figura 2 [8].

Fig.2 - Geometria do canal helicoidal da rosca desenrolado

As seguintes suposições foram feitas para a análise:

- 1. O escoamento é independente do tempo;
- 2. O escoamento é laminar;
- 3. O escoamento é completamente desenvolvido;
- 4. Não há escorregamento na parede;
- 5. Escoamento incompressível;
- 6. Forças da gravidade são desprezadas;
- 7. ψ_2 é considerado desprezível.

Aplicando a equação constitutiva de CEF à equação de conservação de quantidade de movimento, e assumindo regime permanente com as condições de contorno:

$$U = \pi D_{s} N \begin{cases} U_{x} = U_{x}(y) & U_{y} = 0 \\ U_{z} = U_{z}(x,y) & \psi_{z} = 0 \end{cases}$$

onde U = velocidade da rosca. Teremos que a componente x será:

$$0 = \frac{\partial P}{\partial x} + \frac{\partial}{\partial y} \eta \frac{\partial U_x}{\partial y}$$
(3)

Polímeros: Ciência e Tecnologia – Jul/Set-92

E a componente z será:

$$0 = -\frac{\partial P}{\partial z} + \frac{\partial}{\partial x} \left[\eta \frac{\partial U_{z}}{\partial x} \right] + \frac{\partial}{\partial x} \left[\psi_{1} \frac{\partial U_{x}}{\partial y} \frac{\partial U_{z}}{\partial y} \right] - \frac{1}{2} \frac{\partial}{\partial x} \psi_{1} U_{x} \frac{\partial^{2} U_{z}}{\partial x^{2}} + \frac{\partial}{\partial y} \left[\eta \frac{\partial U_{z}}{\partial y} \right] + \frac{1}{2} \frac{\partial}{\partial y} \left[\psi_{1} \frac{\partial U_{x}}{\partial y} \frac{\partial U_{z}}{\partial x} \right] - \frac{1}{2} \frac{\partial}{\partial y} \psi_{1} U_{x} \left[\frac{\partial}{\partial x} \frac{\partial U_{z}}{\partial y} \right]$$
(4)

Para resolver esta equação foi empregado o método de diferenças finitas central [10], no qual as derivadas par, ciais podem ser aproximadas por:

$$\frac{\partial X}{\partial i} = \frac{X_{i+1} - X_{i-1}}{\Delta i^{+} + \Delta i^{-}} e$$

$$\frac{\partial^{2} X}{\partial i^{2}} = \frac{X_{i+1} + (\Delta i^{+} / \Delta i^{-}) \cdot X_{i-1} - (1 + \Delta i^{+} / \Delta i^{-}) \cdot X_{i}}{1/2 [(\Delta i^{+})^{2} + \Delta i^{+} \cdot \Delta i^{-})} (6)$$

A equação característica da rosca foi calculada sujeita às seguintes condições de contorno:

$U_{x}(0) = 0$	$U_{x}(B) = U_{x}$
$U_{z}^{(-W/2,v)} = 0$	$U_{z}^{(W/2,y)} = 0$
$U_{x}(x,0) = 0'$	$U_{2}(x,B) = U$

O canal da extrusora foi dividido numa rede de pontos não equidistantes nos eixos x e z.

A vazão é calculada através dos valores obtidos de velocidade para uma dada queda de pressão, fazendo a somatória da multiplicação das velocidades no ponto i pela área ao redor desse ponto. Quando a diferença entre a vazão anterior e a atual é maior que a diferença estipulada, novas velocidades são calculadas. Quando a diferença é menor, a vazão é calculada para uma nova pressão [11].

Os dados de viscosidade em cisalhamento e primeira diferença de tensões normais foram obtidos através de ajuste polinomial de segunda ordem dos dados reológicos experimentais.

A equação característica da matriz foi calculada utilizando a equação da lei das potências,

$$Q = \frac{n\pi}{1+3n} \left[\frac{\frac{d}{2}\Delta P}{2 \pi L}\right]^{1/n}$$
(7)

onde:

n = índice da lei das potências;

m = consistência do fundido.

e assumindo que Vr = V $_{\Theta}$ = 0 e V₂ = V₂(r), sendo V = velocidade do polímero na matriz.

A Tabela II apresenta os dados experimentais usados na simulação e as taxas de cisalhamento na rosca e matriz, $\dot{\gamma}_i e \dot{\gamma}_m$, respectivamente.

Fig.4 - Razão de inchamento do Extrudado x Taxa de Cisalhamento para os PEAD (T=190°C) e para BLENDA (T=240°C)

RESULTADOS E DISCUSSÃO

As Figuras 3, 4 e 5 mostram a viscosidade do fundido, inchamento do extrudado e coeficiente da primeira diferença de tensões normais a 190°C (homopolímeros) e a 240°C (blenda).

Como esperado, a viscosidade aumentou com o aumento do peso molecular a taxas de cisalhamento baixas e médias. Entretanto, a altas taxas de cisalhamento, o PEAD 3, devido a sua maior distribuição de peso molecular, tem uma viscosidade menor que o PEAD 2. O uso de 10% em peso de PELUAPM aumenta levemente a viscosidade.

O PEAD 3 apresentou um comportamento de inchamento do extrudado diferente. À baixas taxas de cisalhamento seu inchamento foi menor que os PEAD 1 e 2, contrário ao aumento do inchamento esperado com o aumento do peso molecular [12]. O inchamento da blenda foi menor que o inchamento dos PEAD, devido provavelmente que a temperatura utilizada foi maior.

Fig.5 - Coeficiente da Primeira Diferença de Tensões Normais (C.P.D.T.N.) para os PEAD (T=190°C) e para BLENDA (T=240°C).

TABELA II									
Polímero	T (0C)	N (rpm)	ý r (s-1)	ý m (s-1)	1/n(*)	m(**) (Ns ^r /cm)			
PEAD1	190	70	39,4	1030	2,3	0,762			
PEAD 1	210	64	36,0	996	1,974	0,506			
PEAD 2	190	70	39,4	929	2,522	3,577			
PEAD 2	210	64	36,0	920	2,781	2,306			
PEAD 3	190	63	35,5	692	5,525	32,513			
PEAD 3	210	64	36,0	795	4,599	12,160			
BLENDA 9/1	240	50	28,1	795	2,203	0,454			
BLENDA 9/1	260	50	28,1	783	2,150	0,465			

(*) n = $\partial \log \tau / \partial \log \dot{\gamma}$, calculado em $\dot{\gamma}_{m}$.

(**) por extrapolação das curvas de viscosidade em cisalhamento versus taxa de cisalhamento.

Fig. 6 - Vazão x Queda de Pressão para o PEAD 1, onde EXP = Experimental e LP = Lei das Potências.

Fig. 7 - Vazão x Queda de Pressão para PEAD 2, onde EXP = Experimental e LP = Lei das Potências.

Fig. 8 - Vazão x Queda de Pressão para PEAD 3, onde EXP = Experimental e LP = Lei das Potências.

Fig. 9 - Vazão x Queda de Pressão para a Blenda 9/1, onde EXP = Experimental e LP = Lei das Potências.

Fig. 10 - Erro x Temperatura

Para fazer uma comparação, as curvas de O versus ΔP foram também calculadas utilizando a equação da lei das potências. As Figuras 6, 7, 8 e 9 mostram essas simulações a 190° C e 210° C (homopolímeros) e 240°C (blenda).

A figura 10 mostra uma curva de erro (**E**) versus temperatura, onde **E** = [(vazão calculada — vazão experimental) / vazão experimental] x 100. O erro cai com o aumento da temperatura, independente do polímero e da equação constituitiva utilizada na simulação. A equação de CEF deu melhores resultados para os PEAD 1 e 3, às temperaturas menores. Considerando o peso molecular, pode ser observado que quanto maior o seu valor, maior será o erro introduzido utilizando a equação de CEF. Em relação à distribuição de peso molecular, um aumento nesse parâmetro produz um aumento no erro, independente da equação empregada.

CONCLUSÕES

Medidas de elasticidade do fundido conjuntamente com uma equação constitutiva adequada, que incorpora esses parâmetros, podem proporcionar uma melhor simulação do processamento do polímero.

Quando a simulação é isotérmica, portanto longe do processo real, a equação da lei das potências continua sendo uma aproximação válida. Contudo, o processo de extrusão é sabidamente não isotérmico; nesse caso a elasticidade do fundido influirá marcantemente o cálculo do ponto de operação, já que ela é um parâmetro dependente da temperatura. Nesse caso, a equação de CEF poderá apresentar melhores resultados.

À temperatura de 190°C, os valores obtidos utilizando a equação de CEF foram mais próximos aos experimentais. Isso pode ser explicado pelo fato de que à temperaturas mais baixas, os efeitos elásticos serão mais pronunciados.

AGRADECIMENTOS

À Polialden Petroquímica S.A., à FAPESP (Contrato № 87/2699-5) e ao CNPq (401470/88-1MM/FV/PQ) pelo suporte financeiro.

REFERÊNCIAS BIBLIOGRÁFICAS

- BRETAS. R. E. S.; POWELL, R. L. "Dynamic and Transient Rheological Properties of Glass Filled Polymer Melts, Rheologica Acta, 24, 69-74, (1985)".
- BRETAS, R. E. S.; BRETAS, N. G. "Software para o Cálculo das Propriedades Viscoelásticas e Estruturais de Polímeros Fundidos, "Anais do 7º CBECIMAT, UFSC, Florianópolis, p. 479-482, (1986).
- SHROFF, R. N.; SHIDA, M. "Application of a Constitutive Equation to Polymer Melts", Journal of Applied Polymer Science, vol 26, 1847-1863, (1981).
- MITSOULIS, E.; VLACHOPOULOS, J. "A Numerical Study of the Effect of Normal Stress and Elongational Viscosity on Entry Vortex Growth and Extrudate Swell", Polymer Engneering and Science, vol. 25, 677-689, (1985).
- RAUWENDAAL, C. "Throughput-Pressure Relationships for Power Law Fluids in Single Screw Extruders", Polymer Engineering and Science, vol. 26, 1240-1244, (1986).
- AGUR, E. F.; VLACHOPOULOS, J. "A Computer Model of a Single-Screw Plasticating Extruder", Polymer Engineering and Science, vol. 22, 1084-1094, (1982).
- BIRD, R. B.; ARMSTRONG, R. C.; HASSAGER, O. "Dynamics of Polymeric Liquids", vol. 1, 2^e ed., John Wiley & Sons, New York (1987).
- MIDDLEMAN, S. "Fundamentals of Polymer Processing" McGraw Hill Book Co, New York, (1977).
- 9. TANNER, R I. "A Theory of Die-Swell", Journal of Polymer Science, Part A-2, 8, 2067-2078, (1970).
- CROCHET, M. J.; DAVIES, A. R.; WALTERS, K. "Numerical Simulation of Non-Newtonian Flow", Elsevier Pub. Co., New York (1984).
- GRAMADO, C. J. F. "Simulação de um Processo de Transformação de PEAD e de suas Blendas com Peluapm", DE-Ma-UFSCar, 1990, 123p, (Mestrado).
- LA MANTIA, F. P.; VALENZA, A.; ACIERNO, D. "A Comprehensive Experimental Study of the Rheological Behaviour of HDPE. I. Entrance Effect and Shear Viscosity Results," Rheologica Acta, 22, 308-312, (1983).