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Abstract: In comparison with the Q-e scheme, the Revised Patterns Scheme: the U, V Version (the U-V scheme) has 
greatly improved both its accessibility and its accuracy in interpreting and predicting the reactivity of a monomer 
in free-radical copolymerizations. Quantitative structure-activity relationship (QSAR) models were developed to 
predict the reactivity parameters u and v of the U-V scheme, by applying genetic algorithm (GA) and support vector 
machine (SVM) techniques. Quantum chemical descriptors used for QSAR models were calculated from transition 
state species with structures C1H

3
–C2HR3• or •C1H

2
–C2H

2
R3 (formed from vinyl monomers C1H2=C2HR3 + H•), using 

density functional theory (DFT), at the UB3LYP level of theory with 6-31G(d) basis set. The optimum support vector 
regression (SVR) model of the reactivity parameter u based on Gaussian radial basis function (RBF) kernel (C = 10, 
ε = 10–5 and γ = 1.0) produced root-mean-square (rms) errors for the training, validation and prediction sets being 
0.220, 0.326 and 0.345, respectively. The optimal SVR model for v with the RBF kernel (C = 20, ε = 10–4 and 
γ = 1.2) produced rms errors for the training set of 0.123, the validation set of 0.206 and the prediction set of 0.238. 
The feasibility of applying the transition state quantum chemical descriptors to develop SVM models for reactivity 
parameters u and v in the U-V scheme has been demonstrated.

Keywords: Genetic algorithm, quantum chemistry, radical copolymerizations, structure-activity relations, support 
vector machine, transition state.

Introduction

The relationship between the composition of a binary 
mixture of the monomer feed and that of the resulting 
copolymer is one of the most important aspects in 
copolymerization studies[1]. For the copolymerization of 
monomers 1 and 2 (or a radical M

1
 with a monomer M

2
), 

the copolymer composition equation can be expressed as[1,2]

p m 12 m 21 m( 1) ( )R R r R r R= + +  (1)

where R
m
 is the ratio of [M

1
] to [M

2
] in the monomer mixture 

and R
p
 is the ratio of [M

1
] to [M

2
] in the polymer formed, 

r
12

 and r
21

 are the monomer reactivity ratios. Therefore 
Equation 1 is extremely useful in predicting and controlling 
the composition of any copolymer produced from any pair 
of monomers at any concentration ratios[1,2]. But Equation 1 
may be limited because of the shortage of the values of 
r

12
 and r

21
. The Q–e scheme can be used to estimate the 

monomer reactivity ratios with following equations[1-3]

[ ]12 1 2 1 1 2( )exp ( )r Q Q e e e= − −  (2)

[ ]2
21 2 2 1

1
exp ( )

Q
r e e e

Q
= − −  (3)

where Q
1
 and Q

2
 denote the conjugative effects of M

1
 

and M
2
 respectively, e

1
 and e

2
 describe their respective 

polarity. Alfrey and Price[4] assumed that the parameter 
Q may reflect the general reactivity of a monomer 
(or a radical), that is, the energetic property or the 
thermodynamic property, as it governs reactivity in all 
chemical processes. In addition, the parameter e may 
reflect the supposed permanent electric charge resulting 
in mutual attraction or repulsion between the two 
monomers (or radicals). Published studies show that the 
parameter Q is dependent on the reaction free energy 
of the free-radical reaction and the electronegativity of 
the monomer (or the average electronegativity of the 
monomer and the radical); and the parameter e is related 
to the electronegativity of the monomer or both the 
monomer and the corresponding radical[1-3].

Although very widely used, the Q-e scheme has 
serious shortcomings. For example, the assumption 
that permanent electric charges exist on all the species 
involved, including hydrocarbons, is very unlikely. 
Moreover, the assumption that the polarity of a monomer 
being identical to that of the corresponding radical 
derived from that monomer is under debate[1,3-5].
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Recently, the Revised Patterns Scheme, the U-V 
scheme, has greatly improved both its accessibility and 
its accuracy, which can be expressed by Equation 4[3-6].

12 1 2 1 2log log sr r u v= − π −  (4)

where r
1s

 is the monomer reactivity ratio of the monomer 
1 (M

1
) and styrene; u

2
, v

2
, and π

1
 are the counterparts 

of e
2
, Q

2
, and e

1
 in the Q-e scheme, respectively. Thus, 

u
2
 represents the polarity of the double bond in the 

monomer, arising from the influence of substituents, and 
accounts for electronic effects, dipole effects, or specific 
interactions between monomers. v

2
 describes the intrinsic 

reactivity of the monomer M
2
 (i.e., the energetic property 

or the reaction free energy of the free-radical reaction). In 
addition, the U-V scheme can be used for the prediction 
of transfer constants (C

2
) by using the relationship:

2 1 1 2 1 2log(1 ) log sC r u v= − π −  (5)

The U-V scheme may be limited when u and v values 
of the monomer of interest are unknown. Therefore, the 
development of reliable quantitative structure-activity 
relationship (QSAR) models for the prediction of the basic 
parameters u and v is of real interest, particularly for new 
monomers for which experimental investigation would be 
expensive. QSAR approaches can conserve resources and 
accelerate the process of development of new molecules[7-11]. 
Yi et al. developed QSAR models for parameters u and 
v with quantum chemical descriptors calculated from 
radicals C1H

3
—C2HR

3
•. Correlation coefficients for the 

training sets were 0.941 for the parameter u and 0.947 for 
the parameter v; and correlation coefficients for the test sets 
were 0.947 for u and 0.934 for v[12].

Reactivity parameters, such as u and v, are related to 
the reaction rate constants and activation energies. This 
means molecular descriptors from the transition state 
complexes C1H

3
–C2HR3• or •C1H

2
–C2H

2
R3 (formed from 

the vinyl monomer + H•) should be related to u and v 
parameters. The purpose of this work is to calculate 
quantum chemical descriptors from transition state 
structures (C1H

3
–C2HR3• or •C1H

2
–C2H

2
R3) and predict 

the u and v values in the U-V scheme.

Methods

Tables 1 and 2 shows experimental values of 
parameters u and v of 50 vinyl monomers with structures 
C1H

2
=C2HR3[6]. The entire set of reactivity parameters 

u ranged from –3.50 to 1.18 and v ranged from –2.06 
to 1.44. Moreover, the entire sets were characterized 
by a high degree of structural variety. For example, the 
monomers included halides, ketones, sulfides, esters, 
ethers, aromatic rings, and so on. The experimental data 
of 50 reactivity parameters u and v in Tables 1 and 2 
were randomly divided into three sets: a training set (30 
monomers, Nos. 1-30), a validation set (10 monomers, 
Nos. 31-40), and a test set (10 monomers, Nos. 41-50). 
The training set was used to build models, the validation 
set was used to optimize the parameters of models, and 
the test set was used to evaluate the prediction ability.

The transition state complexes C1H
3
–C2HR3• 

(or •C1H
2
–C2H

2
R3) derived from the addition of vinyl 

monomers (C1H
2
=C2HR3) with the radical H• were 

fully optimized and calculated with density functional 
theory (DFT) in Gaussian 09 program (Revision A.02), 
at the UB3LYP level of theory with 6-31G(d) basis set. 
Frequency calculations show that each transition state 
complex had a single imaginary vibrational frequency[13].

Totally, 23 quantum chemical descriptors[14-16] were 
calculated for each transition state complex. These 
descriptors include the average molecular polarizability 
(α), the total dipole moment (µ), the energies of the 
highest occupied molecular orbital (HOMO) and the 
lowest unoccupied molecular orbital (LUMO) of alpha 
spin states (EαHOMO

 and EαLUMO
), the energies of HOMO 

and LUMO of beta spin states (EβHOMO
 and EβLUMO

), the 
energy gap between HOMO and LUMO of alpha spin 
states (Eαg

), the energy gap between HOMO and LUMO 
of beta spin states (Eβg

), Mulliken atomic charges of C1, 
C2 and X3 (Q

MC
1, Q

MC
2 and Q

MX
3), Mulliken charges of 

C1, C2 and X3 with hydrogens summed into heavy atoms 
(q

MC
1, q

MC
2 and q

MC
3), Mulliken atomic spin densities 

(D
MC

1, D
MC

2 and D
MX

3), atomic polar tensor (APT) charges 
(Q

AC
1, Q

AC
2 and Q

AX
2), and APT charges with hydrogens 

summed into heavy atoms (q
AC

1, q
AC

2 and q
AX

3). Here X3 
is the atom joining directly to C2. The descriptor α was 
defined as:

( ) 3xx yy zzα = α + α + α  (6)

Where α
xx

, α
yy

, and α
zz

 are principal components 
of the polarizability tensor and can reflect electric 
perturbation in the x-, y-, and z-coordinates. APT charge 
on an atom is related to trace of the corresponding tensor 
of derivatives of dipole moment with respect to Cartesian 
coordinates of that atom[17].

Support vector machine (SVM) is a set of learning 
algorithm mainly used to resolve the classification and 
regression problem[8,9,18-23]. In SVM, systems use the 
input data into a high dimensional feature space and 
subsequently carry out the linear regression in the feature 
space. For a given data set (x

1
, y

1
), (x

2
, y

2)
, …, (x

l
, y

l
), 

where x
i
 ∈ Rn, y

i
 ∈ R (i = 1, 2,…, l), the linear critical 

function of support vector regression (SVR) is listed as 
below[10,18,19,22]:

(x) (x )
n

i
i

f b= ω +∑φ  (7)

where n is the total number of input–output pairs, ϕ(x) 
is called as the feature mapping function, x is the input 
space, f(x) is the output, and w and b are the coefficients. 
SVR problem is equivalent to the solution of quadratic 
convex programming:

2* *
, , , *

1
min ( , , , ) ( )

2 i iw b i
J w b w C

ξ ξ
ξ ξ = + ξ + ξ∑  (8)

subject to:

( )T
i i iy x w b− − ≤ ε + ξφ  (9)

*( )T
i i ix w b y+ − ≤ ε + ξφ  (10)

where C is a regularized constant determining the trade-
off between the training error and the model flatness, ε is 
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Table 1. Transition state descriptors and u values for 50 monomers.

No. Monomer α EαHOMO/a.u. Q
AC1/electron u(exp.) u(calc.)

Training set

1 Acrylate,butyl 81.525 –0.226004 –0.015174 –2.22 –2.22 

2 Butadiene-1-carboxylate, ethyl 87.107 –0.204126 0.115617 –2.57 –2.57 

3 Pyridine, 4-vinyl- 77.618 –0.193613 0.079870 –0.94 –0.94 

4 Vinyl benzoate 95.609 –0.199616 0.446112 –0.86 –0.86 

5 Carbazole, N-vinyl - 151.658 –0.196652 0.389249 –0.25 –0.25 

6 Acrolein 32.337 –0.215000 –0.131978 –2.75 –2.75 

7 Acrylonitrile 33.902 –0.237902 0.125046 –2.60 –2.60 

8 Vinyltrimethylsilane 74.106 –0.194325 –0.286116 –1.41 –1.41 

9 Acrylate,2-chloroethyl 67.461 –0.218034 –0.068475 –2.38 –2.38 

10 Vinyl isobutyl ether 68.950 –0.153907 0.406922 0.41 0.41 

11 Vinyl 2-chloroethyl ether 56.734 –0.161437 0.391636 1.18 1.18 

12 Vinyl phenyl sulfide 101.974 –0.161535 0.056216 0.20 0.04 

13 Vinyl tert-butyl sulfide 82.491 –0.155164 0.033071 0.41 0.41 

14 Styrene, p-methyl- 96.941 –0.163916 0.058980 –0.20 –0.20 

15 Styrene, p-l-(2-hydroxypropyl)- 125.611 –0.158901 0.094502 –0.60 –0.60 

16 Acrylate,2-nitrobutyl 91.689 –0.215196 –0.073653 –2.39 –2.39 

17 Styrene, 2,5-dichloro- 107.470 –0.188014 0.094944 –1.98 –1.61 

18 p-Vinylbenzoic acid 97.001 –0.201456 0.037973 –1.03 –1.04 

19 Allyl chloride 40.795 –0.199831 –0.035940 –0.39 –0.39 

20 Acrylate,benzyl 106.321 –0.238936 –0.010546 –2.68 –2.68 

21 Vinyl chloroacetate 55.560 –0.208285 0.451477 1.04 0.20 

22 Pyridine, 2-vinyl- 78.959 –0.182180 0.064983 0.98 0.21 

23 Styrene, p-chloromethyl- 112.527 –0.177209 0.086353 –0.62 –0.62 

24 Vinylisocyanate 40.953 –0.181584 0.329776 0.29 0.29 

25 Vinyl dichloroacetate 65.958 –0.217299 0.461101 –0.98 –0.98 

26 Vinyl dodecyl ether 158.316 –0.146817 0.392157 0.44 0.44 

27 Pyridine, 2-methyl-5-vinyl- 93.445 –0.172672 0.088674 –1.04 –1.04 

28 Vinyl acetate 46.474 –0.197016 0.428884 –0.44 –0.44 

29 Vinyl ethyl sulfoxide 64.659 –0.195200 –0.050033 –1.02 –1.02 

30 Acryloyl chloride 44.601 –0.261455 –0.279107 –3.50 –3.50 

Validation set

31 Vinyl stearate 223.967 –0.195524 0.457350 –1.19 –1.14 

32 Vinyl isobutyl sulfide 83.076 –0.155534 0.087930 0.14 –0.08 

33 Vinyl isothiocyanate 54.529 –0.227898 0.656401 –1.56 –1.10 

34 Vinyl methyl ketone 44.882 –0.233541 –0.049383 –2.46 –2.52 

35 Vinyl hendecanoate 149.227 –0.172121 0.281400 –0.34 –0.54 

36 p-Vinylbenzylmethylcarbinol 116.505 –0.192609 0.065644 –0.66 –0.81 

37 Acrolein, methyl- 44.033 –0.231786 –0.003509 –1.73 –2.40 

38 Acrylamide 40.464 –0.218094 0.001179 –1.82 –1.84 

39 Vinyl ethyl sulfide 60.693 –0.151921 0.048392 0.66 0.49 

40 Vinyl ethyl oxalate 73.913 –0.206961 0.464290 –1.11 –0.60 

Test set

41 Allyl acetate 57.652 –0.191875 –0.005274 –0.37 0.00 

42 Styrene 76.991 –0.191317 0.054793 0.00 –0.39 

43 Acrylate, methyl 47.599 –0.237418 –0.004654 –2.34 –2.27 

44 Butadiene, 2-chloro- 51.765 –0.215561 –0.010861 –2.18 –1.81 

45 Butadiene, 2-fluoro- 41.187 –0.217407 0.005885 –1.32 –1.75 

46 Acrylate,ethyl 58.979 –0.227301 –0.007137 –1.99 –1.87 

47 Propene, 3,3,3-trichloro- 63.047 –0.235506 –0.100136 –2.35 –1.93 

48 Pyridine, 2-vinyl-5-ethyl- 105.055 –0.177101 0.061485 –0.20 –0.51 

49 Vinyl chloride 29.774 –0.193432 0.277557 –0.90 –0.50 

50 Vinyl chloromethyl ketone 53.411 –0.247365 –0.003617 –1.58 –1.94 
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Table 2. Transition state descriptors and v values for 50 monomers.

No. Monomer Q
MX3/electron D

MX3/electron Eβg/a.u. v(exp.) v(calc.)

Training set

1 Acrylate,butyl 0.619517 –0.067972 0.163555 0.12 0.10 

2 Acrylate,ethyl 0.616288 –0.064224 0.164069 0.08 0.08 

3 Vinyl isothiocyanate –0.340547 0.005140 0.179246 0.18 0.18 

4 p-Vinylbenzylmethylcarbinol 0.142632 –0.086980 0.193707 0.18 0.18 

5 Vinyl ethyl oxalate –0.426139 0.012963 0.207942 –0.71 –0.71 

6 Vinyl 2-chloroethyl ether –0.438814 0.109968 0.282286 –2.06 –2.01 

7 Acrylate,benzyl 0.599957 –0.088491 0.131658 0.28 0.28 

8 Acrolein, methyl- 0.428769 –0.102467 0.133677 0.77 0.77 

9 Acrylate, methyl 0.602835 –0.082731 0.153543 0.16 0.16 

10 Acrolein 0.214832 –0.037543 0.193545 0.56 0.56 

11 Acrylonitrile 0.349842 –0.222754 0.215579 0.42 0.42 

12 p-Vinylbenzoic acid 0.151699 –0.085617 0.206676 0.50 –0.03 

13 Vinylisocyanate –0.371647 –0.072006 0.237466 –0.91 –1.25 

14 Allyl chloride –0.377408 –0.077934 0.243789 –1.53 –1.53 

15 Vinyl dichloroacetate –0.437571 0.006826 0.237937 –1.30 –1.30 

16 Vinyl dodecyl ether –0.437582 0.117885 0.282686 –1.62 –1.62 

17 Vinyl ethyl sulfoxide 0.766972 0.008160 0.149232 –0.94 –0.94 

18 Acryloyl chloride 0.269538 –0.072846 0.152812 1.09 1.09 

19 Allyl acetate –0.044120 –0.078036 0.226252 –1.97 –1.97 

20 Styrene 0.142227 –0.086213 0.201614 0.00 0.00 

21 Butadiene-1-carboxylate, ethyl –0.086160 –0.235962 0.159707 0.92 0.92 

22 Butadiene, 2-chloro- –0.007180 –0.063717 0.181896 1.44 1.44 

23 Butadiene, 2-fluoro- 0.401754 –0.044417 0.184933 0.51 0.51 

24 Carbazole, N-vinyl - –0.625568 –0.060404 0.130622 –0.58 –0.58 

25 Propene, 3,3,3-trichloro- –0.298262 –0.045593 0.199965 –0.84 –0.84 

26 Pyridine, 2-methyl-5-vinyl- 0.187799 –0.197409 0.170313 0.28 0.28 

27 Vinyltrimethylsilane 0.697164 0.003655 0.231098 –1.15 –1.15 

28 Pyridine, 2-vinyl- 0.310417 –0.174770 0.164044 0.32 0.32 

29 Vinyl acetate –0.438523 –0.001582 0.234834 –1.56 –1.34 

30 Vinyl benzoate –0.431653 0.041245 0.199602 –1.45 –1.45 

Validation set

31 Styrene, p-methyl- 0.206484 –0.197495 0.174979 0.08 0.20 

32 Styrene, p-l-(2-hydroxypropyl)- 0.209978 –0.200617 0.172788 0.16 0.25 

33 Vinyl hendecanoate –0.436041 0.024143 0.234897 –1.33 –1.03 

34 Acrylate,2-chloroethyl 0.573229 –0.054694 0.219405 0.25 0.14 

35 Acrylate,2-nitrobutyl 0.584817 –0.054855 0.213564 0.44 0.22 

36 Acrylamide 0.582601 –0.079071 0.154726 –0.07 0.17 

37 Pyridine, 4-vinyl- 0.212819 –0.184798 0.155174 0.30 0.46 

38 Styrene, p-chloromethyl- 0.207904 –0.198183 0.169418 0.21 0.29 

39 Vinyl ethyl sulfide 0.156101 0.128956 0.220314 –0.77 –0.52 

40 Vinyl isobutyl ether –0.435610 0.115740 0.276534 –1.41 –1.72 

Test set

41 Pyridine, 2-vinyl-5-ethyl- 0.311233 –0.176549 0.164013 0.12 0.32 

42 Vinyl chloride –0.015401 0.064958 0.258229 –1.16 –0.87 

43 Vinyl chloroacetate –0.424592 0.010159 0.232613 –1.65 –1.16 

44 Vinyl chloromethyl ketone 0.431368 –0.093433 0.133228 0.97 0.72 

45 Vinyl phenyl sulfide 0.200581 0.112593 0.182463 –0.58 –0.54 

46 Vinyl stearate –0.453050 –0.001541 0.234311 –1.15 –1.31 

47 Vinyl tert-butyl sulfide 0.138201 0.116519 0.208370 –0.64 –0.59 

48 Vinyl isobutyl sulfide 0.152256 0.144593 0.216024 –0.43 –0.50 

49 Vinyl methyl ketone 0.420669 –0.115562 0.131660 0.54 0.79 

50 Styrene, 2,5-dichloro- 0.216569 –0.197234 0.152417 0.67 0.47 
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a prescribed parameter of the ε–insensitive loss function, 
ξ and ξ* are positive slack variables for the data points.

Usually, SVR uses the ε-insensitive loss function to 
measure the empirical risk (training error):

( ( ) )( )
( ) ,

( ( ) )0
f x yf x y

f x y
f x yε

− ≥ ε − − ε
− =  − < ε

 
(11)

Thus, Equation 7 can be rewritten as:

*( ) ( ) (x ) (x)
n

i i i
i

f x a a b= − ⋅ +∑ φ φ  (12)

where α
i
 and α

i
* are the introduced Lagrange multipliers.

Through selecting the appropriate kernel function, 
the entire problem can be solved in the input space itself:

*( ) ( ) (x, )
s

i i
i

f x a a K y b= − +∑
 

(13)

where s is the number of input data having nonzero values 
of (α

i
 and α

i
*). The kernel function K(.,.) must satisfy the 

condition of Mercer’s theorem so that it corresponds 
to some type of inner product in the high-dimensional 
feature space. In general, the Gaussian radial basis 
function (RBF) is taken as the kernel function of SVM 
models:

2
(x ,x ) exp( x x )i j i jK = −γ −  (14)

The adjustable parameter γ plays a major role in the 
performance of the kernel, and should be carefully tuned 
to the problem at hand. So three parameters C, ε and γ in 
ε-SVR models should be adjusted. All SVM models from 
the present paper were obtained with winSVM (http://
www.cs.ucl.ac.uk/staff/M.Sewell/winsvm/).

Genetic algorithms (GA) are optimization 
algorithms that mimic natural biological evolution. At 
each generation, a new set of approximations is created 
by the process of selecting individuals according to 
their level of fitness and breeding them together using 
genetic operators inspired by natural genetics, i.e. 
random mutation, crossover and selection procedures. 
This process leads to better models or solutions from an 
originally random starting population or sample[24,25]. GA 
together with multiple linear regression (MLR) analysis 
has become an effective and powerful tool in selecting 
variables for QSARs. Thus GA-MLR technique in the 
BuildQSAR program[26] was used in this work. Next, the 
optimal descriptor sets were used as the input files of 
SVM models.

The accuracy of a model was evaluated with the root-
mean-square (rms) error, which can be expressed as

2( )i if y
rms

N
−∑=

 
(15)

where f
i
 is the calculated value, y

i
 is the experimental value 

for the ith monomer and N is the total number of samples 
used. The smaller the rms value, the more accuracy the 
model will be.

Results and Discussion

By analyzing the parameters u and v with respect 
to the 23 descriptors with the GA-MLR technique 
in the BuildQSAR program[26], respective optimal 
subset of descriptors in the model of parameters u 
and v was obtained. The optimal subset of descriptors 
for the parameter u comprises the average molecular 
polarizability (α), the HOMO energy of alpha spin states 
(EαHOMO

), and APT charge of C1 atom (Q
AC

1). The optimal 
descriptor subset for the parameter v consists of Mulliken 
atomic charge of X3 (Q

MX
3), Mulliken atomic spin density 

of X3 (D
MX

3), and the energy gap between HOMO and 
LUMO of beta spin states (Eβg

). The values of these 
descriptors are shown in Tables 1 and 2. The definitions 
and standardized coefficients of these descriptors in each 
MLR model are listed in Table 3. A larger absolute value 
of beta coefficients means the corresponding descriptor 
is more significant. Thus, EαHOMO

 and Eβg
 are the most 

significant descriptors in the models of parameters u and 
v, respectively.

The parameter u denotes the polarity of a monomer. 
A large u value means less polarity of a monomer. The 
frontier molecular orbital descriptors, such as E

HOMO
, 

E
LUMO

, and E
g
( = E

LUMO
 - E

HOMO
) play major roles in 

governing many chemical reactions[7]. These descriptors 
were used widely in describing molecular reactivity, 
stability[27,28], or polarity[7]. According to the frontier 
molecular orbital theory of chemical reactivity[7], E

HOMO
 

describes the susceptibility of the molecule toward attack 
by electrophiles and thus is correlated with the ionization 
potential; and E

LUMO
, characterizing the susceptibility of 

the molecule toward attack by nucleophiles, is directly 
related to the electron affinity. A higher E

HOMO
 value 

means the stronger electron-donating ability and the 
smaller electronegativity[2], which results in a smaller 
electronic effect and molecular polarity. Thus EαHOMO

 is 
positively correlated with the parameter u.

Local electron densities or charges are important 
in many chemical reactions and physicochemical 

Table 3. Descriptors selected for models, meaning and beta coefficients.

Model Symbol Descriptor Beta coefficients

u

α The average molecular polarizability. –0.193

EαHOMO
The energy of HOMO for alpha spin states. 0.802

Q
AC1 Atomic polar tensor charges of C1. 0.291

v

Q
MX3 Mulliken atomic charges of X3. 0.265

D
MX3 Mulliken atomic spin densities of X3. –0.279

Eβg
The energy gap between HOMO and LUMO of beta spin states. –0.419

Polímeros, vol. 23, n. 4, p. 477-483, 2013 481

http://www.cs.ucl.ac.uk/staff/M.Sewell/winsvm
http://www.cs.ucl.ac.uk/staff/M.Sewell/winsvm


Tan, Z. et al. - Prediction of monomer reactivity in radical copolymerizations from transition state quantum chemical descriptors

properties of compounds. They are also used widely for 
the description of the molecular polarity of molecules[7]. 
Molecular polarity is dependent on bond polarity and 
the molecular geometry. Generally, for vinyl monomers 
C1H

2
=C2HR3, the APT charge of C1, Q

AC
1 is less than the 

charge of C2, Q
AC

2. A monomer with the larger descriptor 
Q

AC
1 suggests that the polar bonds (i.e., the double bond 

in the monomer) is relatively evenly (or symmetrically) 
distributed, which results in a less molecular polarity. So it 
is easy to understand that the descriptor Q

AC
1 is positively 

related to the parameter u. The last descriptor appearing 
in the model of u is α, i.e., the average polarizability. α 
increases with the size of the species either as a result of an 
increase with the number of electrons or by the expansion 
of the molecular radius. A large α indicates a large size 
of substituent group R3 in a vinyl monomer, which 
may lower the molecular symmetry and lead to a large 
molecular polarity and a small parameter u. Therefore, α 
is negatively correlated with the parameter u.

The parameter v describes the intrinsic reactivity of 
a monomer. A high reactive monomer, that has a large 
conjugative effect and a large v value, may lower the 
activation energy gained on adding the radical to the double 
bond of the monomer. Table 3 shows that v increases with 
decreasing Eβg

. The reason is that a large E
g
 means high 

stability for the molecule in the sense of its lower reactivity 
in chemical reactions[27]. A transition state species (C1H

3
–

C2HR3• or •C1H
2
–C2H

2
R3) possessing a small Eβg

 value 
suggests that the corresponding monomer is prone to 
forming a transition state structure and has a large parameter 
v value. As stated above, atomic charge descriptors can 
reflect molecular chemical reactivity (or intermolecular 
interactions)[7]. A large Q

MX
3 (Mulliken atomic charge of X3) 

or small D
MX

3 (Mulliken atomic spin density of X3) implies 
that the monomer is relatively easy to form a transition state 
structure and has a large v value. Thus, both Q

MX
3 and D

MX
3 

are related to the reactivity parameter v.
The program winSVM was used to develop SVM 

models for u and v. In order to get satisfactory models, 
the regularized constant C, the width of the non-penalized 
tube ε and the bandwidth parameter γ of the RBF kernel 
function should be selected properly[22]. We take the 
training of SVM models of u as an example. Firstly, 
the training set of u (in Table 1) was selected as the 
input file to obtain 100 models after 100 iterations. The 
initial optimization results show that a model with SVM 
parameters of C = 10, ε = 10–4 and γ = 1.0 produced a 
low rms error. Thus, these SVM parameters were used for 
further optimization with the validation set. By training 
the SVM models of u with different γ values of 0.8, 0.9, 
1.0, 1.1, 1.2, 1.3, and 1.4 under the condition of C = 10 
and ε = 10–4, the validation set produced the rms errors 
of 0.403, 0.353, 0.327, 0.345, 0.373, 0.390, and 0.405, 
respectively. Thus, the optimal γ corresponding to the 
minimal rms error (0.327) was set to 1.0. Subsequently, 
by applying γ = 1.0 and ε = 10–4, the second parameter C 
was optimized with C being equal to 7, 8, 9, 10, 11, 12, 
and 13. The validation set rms errors based on different 
C are 0.395, 0.362, 0337, 0.327, 0.328, 0.334, and 0.343, 
respectively, so the optimal C was equal to 10. Similarly, 
the third parameter ε under the condition of C of 10 and 

γ of 1.0, was optimized with ε = 10–6, ε = 10–5, ε = 10–4, 
ε = 10–3, ε = 10–2, and ε = 10–1. The validation set rms 
errors are 0.326, 0.326, 0.327, 0.327, 0.331, and 0.388, 
respectively. Thus, the optimal ε equals 10–5.

In the end, the optimum ε- SVR model of u with the 
RBF kernel (C= 10, ε = 10–5 and γ = 1.0) was tested by 
the prediction set in Table 1. The u values calculated with 
the optimal SVR model are listed in Table 1 and depicted 
in Figure 1. For the SVM model of u, the rms errors for 
the training, validation and prediction sets are 0.220, 
0.326 and 0.345, respectively. The mean rms error and 
correlation coefficient for 50 monomers are 0.272 and 
0.972, respectively.

The three SVM parameters (C, ε and γ) of the model 
v were tuned with the same method. Learning parameters 
of C = 10, ε = 10–4 and γ = 1.0 were selected after initial 
optimization. Then the different parameters γ (0.9, 1.0, 
1.1, 1.2, 1.3, and 1.4), C (5, 10, 15, 20, 25, 30, 35, and 
40), and ε (10–6, 10–5, 10–4, 10–3, 10–2 and 10–1), were 
tested successively. Respective validation set rms errors 
are 0.271, 0.254, 0.242, 0.236, 0.254, and 0.272 for 
different γ values (C = 10 and ε = 10–4); 0.337, 0.236, 
0.214, 0.206, 0.206, 0.216, 0.241, and 0.289 for different 
C values (γ = 1.2 and ε = 10–4); and 0.206, 0.206, 0.206, 

Figure 2. Plot of the experimental versus calculated v values.

Figure 1. Plot of the experimental versus calculated u values.
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0.206, 0.212, and 0.254 for different ε values (C = 20 and 
γ = 1.2). Thus, the optimal SVM parameters for v should 
be C = 20, γ = 1.2 and ε = 10–4.

The optimal ε-SVR model for v produced rms errors 
for the training set of 0.123, the validation set of 0.206 
and the prediction set of 0.238. The mean rms error and 
correlation coefficient for the parameter v of 50 monomers 
are 0.170 and 0.981, respectively, which are comparable 
to the values of existing models[12]. The calculated v 
values from the optimal SVR model are listed in Table 2 
and depicted in Figure 2.

It should be noted that there are significant 
experimental errors for reactivity parameters such as 
Q, e, u, and v. For example, as long as the correlation 
coefficient R between the experimental and calculated e 
values is greater than 0.876 (rms = 0.326), then a good fit 
has been achieved[2,12]. This means these QSAR models 
of reactivity parameters (u and v) are acceptable if their 
correlation coefficients are close to or above 0.9. Our 
models in this paper have correlation coefficients of 0.972 
for u and 0.981 for v, denoting that our results for the 
model e are satisfactory and acceptable.

Conclusions

QSAR models of the reactivity parameters u and v 
in the U-V scheme used for the prediction of reactivity 
ratios and transfer constants for vinyl monomers in radical 
copolymerization were developed, by applying GA and 
SVM techniques. Quantum chemical descriptors used to 
build SVR models, were calculated from transition state 
species with structures C1H

3
–C2HR3• or •C1H

2
–C2H

2
R3, 

formed from vinyl monomer C1H
2
=C2HR3 + H•. The 

models were proved to be accurate with mean rms errors 
of 0.272 (R = 0.972) for u and 0.170 (R = 0.981) for v, 
which demonstrate that calculating descriptors from 
transition state structures to develop SVM models for 
reactivity parameters u and v is feasible.
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