Emprego de um Catalisador de Cromo (III) Contendo o Ligante N,N'-di-*t*-Bu-2,11-diaza [3.3] (2,6)-piridinofano na Polimerização de Etileno e de Propileno

Simoni M. P. Meneghetti Politeno Indústria e Comércio S.A., Bahia

Pierre Lutz Institut Charles Sadron, Strasbourg, França

Jacky Kress Université Louis Pasteur, Strasbourg, França

Resumo: Este trabalho trata da síntese e caracterização de um complexo de Cr(III) contendo o ligante N,N'-di-*t*-Bu-2,11diaza [3.3] (2,6)-piridinofano (*t*-Bu-N₄CrCl₂⁺Cl⁻) e posterior avaliação catalítica na polimerização de etileno e propileno, sob várias condições de reação, em presença de MAO (metilaluminoxana) ou Et₃Al₂Cl₃ (sesquicloreto de etilalumínio -EASC), como cocatalisadores. O emprego do sistema catalítico *t*-Bu-N₄CrCl₂⁺Cl⁻/Et₃Al₂Cl₃ produziu copolímeros de etileno-propileno e de polietilenos, com bons rendimentos. A caracterização desses polímeros, através de várias técnicas analíticas, mostrou que os mesmos são essencialmente lineares e de alta massa molar.

Palavras-chave: Catálise, poliolefinas, cromo(III), ligantes macrocíclicos, diazapiridinofano.

Use of the chromium (III) catalyst bearing N,N'-di-t-Bu-2, 11-diaza[3.3] (2,6)-pyridinophane ligand in polymerisation of ethylene and propylene

Abstract: Chromium (III) complex bearing N,N'- di-*t*-Bu-2, 11-diaza[3.3] (2,6)-pyridinophane ligand (*t*-Bu-N₄CrCl₂+Cl⁺) was synthesized and characterized. This complex was tested in ethylene and propylene polymerisation, under several reaction conditions, in the presence of MAO (metilaluminoxane) or $Et_3Al_2Cl_3$ (ethyl aluminium sesquichloride), as cocatalysts. The use of the catalytic system *t*-Bu-N₄CrCl₂+Cl⁻/Et₃Al₂Cl₃ led to ethylene-propylene copolymers and polyethylene, with good yields. The polymers thus produced display high molar masses and narrow polydispersities.

Keywords: Catalysis, polyolefins, chromium (III), macrocyclic ligand, pyridinophane.

Introdução

A catálise de polimerização de olefinas, em presença de cromo, é um campo de pesquisa ainda em desenvolvimento^[1-5]. Os mecanismos envolvidos na catálise heterogênea (Processos Phillips e Union Carbide) não estão completamente estabelecidos e estudos em meio homogêneo, principalmente em presença de complexos moleculares de estrutura definida, podem fornecer informações valiosas do ponto de vista mecanístico^[6-10].

Ligantes nitrogenados têm se revelado bastante versáteis na estabilização de complexos com potencial catalítico na polimerização de olefinas^[11]. Porém, a possibilidade de se utilizar ligantes nitrogenados macrocíclicos, como os diazapiridinofanos, coordenados a metais de transição, para a polimerização de olefinas, ainda não havia sido investigada. Nossos trabalhos mostraram a potencialidade desses ligantes em estudos mecanísticos e de fluxionalidade de vários complexos^[12,13].

Experimental

Materiais

A síntese e caracterização do complexo de Cr(III) contendo o ligante N,N'-di-*t*-Bu-2,11-diaza [3.3] (2,6)piridinofano^[13], foi realizada sob atmosfera inerte utilizando técnicas de Schlenk (manipulação sob atmosfera inerte).

O ligante N,N'-di-*t*-Bu-2,11-diaza [3.3] (2,6)-piridinofano foi sintetizado pela reação entre o 2,6-bis(bromometil)piridina e a *t*-butilamina, em duas etapas, conforme esquema 1. O mesmo foi purificado por recristalização (resfriamento de uma solução em etanol), sob a forma de cristais brancos,com rendimento de 54%^[12,13].

Autor para correspondência: Simoni M. P. Meneghetti, Politeno Indústria e Comércio S.A., Rua Benzeno, nº 2391, Pólo Petroquímico, CEP: 42810-000, Camaçari, BA. E-mail: simoni.meneghethi@politeno.com.br

O complexo de Cr(III) contendo o ligante N,N'-di-*t*-Bu-2,11diaza [3.3] (2,6)-piridinofano (*t*-Bu-N₄CrCl₂⁺Cl⁻) foi sintetizado pela reação entre o ligante N,N'-di-t-Bu-2,11-diaza [3.3] (2,6)-piridinofano (*t*-Bu-N₄) e o precursor (THF)₃CrCl₃, em THF (tetraidrofurano) como solvente, conforme reação 1, abaixo.

$$(\text{THF})_3 \text{CrCl}_3 + t_{\text{Bu}-\text{N}_4} \xrightarrow{\text{IHF}} (t_{\text{Bu}-\text{N}_4}) \text{CrCl}_2^+ \text{Cl} + 3 \text{ THF}$$
(1)
(1)

Todos os solventes utilizados foram secos segundo procedimentos descritos na literatura^[14]. O etileno e o propileno utilizados nas reações de polimerização foram adquiridos com pureza 99,9% (Air Liquids).

Reação de polimerização

Numa reação de polimerização típica, o experimento é realizado à temperatura de trabalho selecionada, num reator Buchi de 250 mL, equipado com agitação mecânica, submetido a ciclos de purga com argônio e aplicação de vácuo. Todas as manipulações são realizadas empregando técnicas de Schlenk. Após adição de tolueno e catalisador o reator é pressurizado com etileno e/ou propileno e o cocatalisador é adicionado. Após o tempo de reação estabelecido, o reator é despressurizado e o polímero formado é precipitado em MeOH/HCl e seco à vácuo até peso constante.

Caracterização dos Polímeros

Os polímeros foram caracterizados por Espectroscopia de Ressonância Magnética Nuclear (equipamentos Bruker AC-200, AC-300 e AM-400), Espectroscopia na região do Infravermelho Médio (FTIR Bomen MB 155) e SEC (cromatografia de exclusão de tamanho) a 140 °C (Waters 150C, TCB (triclorobenzeno), detector índice de refração (padrões de PE linear) e DSC (calorimetria diferencial de varredura) (DSC4 Perkin Elmer).

Resultados e Discussão

A solução formada pelo complexo (THF)₃CrCl₃ em THF apresenta uma coloração rosa intensa e, após a reação, a formação de um sólido de coloração rosa pálida indicou a presença do complexo (1). Este sólido formado, instável ao ar, apresentou-se extremamente insolúvel em vários solventes testados (CH₂Cl₂, CHCl₃, MeCN, tolueno, etc.) e esta insolubilidade impediu uma caracterização mais detalhada por RMN ¹H ou a obtenção de cristais para caracterização por difração de Raio X. Porém, a caracterização por espectroscopia no infravermelho indicou a substituição das moléculas de THF no complexo precursor pelas moléculas do ligante, principalmente pelo desaparecimento da banda de absorção a 845 cm⁻¹, característica das moléculas de THF. As bandas das ligações C-Cl (400-300 cm⁻¹) do complexo inicial sofreram modificações: 3 bandas existentes no complexo precursor ((THF)₃CrCl₃) deram lugar a apenas 2 bandas, em concordância com a estrutura *t*-Bu-N₄CrCl₂+Cl⁻.

O caráter iônico do complexo, na estrutura proposta, justifica também a insolubilidade observada para o mesmo. Os resultados de análise elementar confirmam, com boa aproximação, a formação do complexo [% determinado (calculado) para $C_{22}H_{32}N_4CrCl_3$: C: 48,83 (51,71), H: 7,08 (6,27), N: 8,50 (10,97)].

Homopolimerização do Etileno e Caracterização dos Polietilenos Obtidos

Os testes catalíticos indicam que o complexo *t*-Bu-N₄CrCl₂⁺Cl⁻ é ativo em presença de etileno conduzindo à formação de polietilenos. Os principais resultados dos testes de homopolimerização estão apresentados na Tabela 1.

Como cocatalisadores foram testados o $Et_3Al_2Cl_3$ (sesquicloreto de etil alumínio) e o MAO (metilaluminoxana). A atividade do sistema *t*-Bu-N₄CrCl₂+Cl-/Et₃Al₂Cl₃ é mais alta que a do sistema *t*-Bu-N₄CrCl₂+Cl-/MAO. O fator que determina esse comportamento é difícil de estabelecer, pois vários aspectos devem ser analisados num processo de ativação. Além do poder de abstração de halogêneos ou o poder de alquilação de um cocatalisador, a estrutura das espécies catalíticas formadas deve ser considerada. Neste contexto cabe destacar que o tipo de contra-íon formado e a energia de associação do par iônico podem ter papéis fundamentais^[15]. Uma possibilidade é atribuir esta maior eficácia do EASC como cocatalisador ao seu poder alquilante e sua acidez de Lewis superiores, quando comparado ao MAO.

A variação da razão Et₃Al₂Cl₃/catalisador foi avaliada e a

Tabela 1. Polimerização de etileno em presença de t-Bu-N₄CrCl₂⁺Cl⁻

	T (°C)	Al/Cr (1)	Rdt. (g)	Atividade (2)	T _f (3)	X (4)
1	20	180 MAO	1,1	3150	139,0	76
2	20	80 Et ₃ Al ₂ Cl ₃	11,9	34000	139,3	66
3	20	40 Et ₃ Al ₂ Cl ₃	12,0	34300	140,0	61
4	20	20 Et ₃ Al ₂ Cl ₃	10,0	28600	139,6	61
5	40	80 Et ₃ Al ₂ Cl ₃	2,1	5950	140,1	66
6	60	40 Et ₃ Al ₂ Cl ₃	1,6	6850	140,5	73

Condições de polimerização: 100 mL tolueno, 2 h, 0,025 mmol de catalisador, 7 bar de pressão de etileno.

(1) Razão molar Al/Cr;

(2) g polímero/(h.bar.mol catalisador);

(3) Temperatura de fusão determinada por DSC;

(4) % de cristalinidade determinada por DSC considerando um calor de fusão de um polietileno 100% cristalino em 64,5 cal/g.

Figura 1. Espectro de absorção na região do infravermelho médio para o polietileno obtido no teste catalítico 6

atividade foi otimizada a uma razão de aproximadamente 40/1 (testes 2, 3 e 4).

O aumento da temperatura de polimerização (testes 3, 5 e 6) resultou na diminuição do rendimento da reação, devido, provavelmente, a uma rápida desativação do sistema catalítico.

Os polietilenos (PE) obtidos foram caracterizados por espectroscopia no infravermelho, DSC e SEC alta temperatura (em alguns casos). Os resultados de DSC podem ser vistos na Tabela 1. Estas caracterizações revelaram que estes PE são de alta massa molecular [Teste 3 (M_w =896.000 g/mol; M_w/M_n = 2,5) e Teste 6 (M_w =282.000 g/mol; M_w/M_n = 4,3)]. A diminuição da massa molecular, do teste 3 para o teste 6, pode estar relacionada ao aumento da temperatura do meio reacional, que acelera as reações de transferência e/ou terminação.

A análise do espectro obtido na região do infravermelho médio (Figura 1) permitiu observar as principais bandas de absorção de um polietileno (Teste 6) relativas às vibrações vCH_2 , δCH_2 e rCH₂ à 2900, 1470 e 720 cm⁻¹.

Os polietilenos obtidos são essencialmente lineares, como pode ser comprovado pelas suas temperaturas de fusão (Tabela 1) e pela fraca intensidade da banda de absorção, na região do infravermelho médio, a 1376 cm⁻¹. Essa banda de absorção é característica das vibrações δ_s CH₃ e traduz a presença de grupamentos metila na cadeia olefínica. Cabe destacar que esta banda pode se sobrepor a outras bandas devidas à absorção dos grupamentos CH₂.

A Figura 2 mostra a ampliação da região entre 1400 e 1330 cm^{-1} para os testes 3 e 6. O espectro do teste 3 mostra uma banda mais intensa a 1376 cm^{-1} , em relação ao teste 6, coerente com o % de cristalinidade, respectivamente, de 61% e 73% (determinado por DSC).

Figura 2. Espectro de absorção na região do infravermelho (1400 e 1330 cm^{-1}) para os polietilenos obtidos nos testes catalíticos 3 e 6

Figura 3. Variação dos rendimentos e das atividades médias em função do tempo (condições de polimerização: 100 mL tolueno, velocidade de agitação=300 rpm, 0,0125 mmol de catalisador, pressão de etileno = 2 bar, 20 °C, Al/Cr = 20, 20 °C). Atividade média = (g polímero/h.bar.mol catalisador).

O perfil cinético da reação de polimerização pode ser observado na Figura 3. A atividade passa por um máximo em torno de 5 horas de reação. Após esse tempo, o sistema começa a sofrer desativação, indicando uma instabilidade da espécie formada, após ativação com o cocatalisador.

Copolimerização entre o Etileno e o Propileno e Caracterização dos Copolímeros Obtidos

O sistema catalítico revelou-se inativo em relação à homopolimerização do propileno, porém foi possível obter copolímeros etileno-propileno. Um copolímero característico (teste 8) apresentou um ponto de fusão de 130 °C e um grau de cristalinidade de 45%, coerentes com a existência de grupos metila (Me) provenientes da inserção do propileno na cadeia etilênica. A existência dessas metilas foi confirmada pelo espectro de RMN ¹³C (Me provenientes da inserção do propileno na cadeia etilênica marcadas com _{*} na Figura 4). As metilas terminais não aparecem muito intensas, devido provavelmente à alta massa molar dos polímeros.

No espectro de RMN ¹H (Figura 5) observa-se, em torno de 1,20 ppm, o sinal correspondente aos grupamentos C-H (metino) e a 0,94 ppm o sinal da metila (d, Me), ambos característicos da inserção do propileno. A integração desses sinais,

Figura 4. Espectro de RMN ¹³C do copolímero obtido no teste catalítico 8

Figura 5. Espectro de RMN ¹H do copolímero obtido no teste catalítico 8

em relação ao sinal principal da seqüência etilênica (1,38 ppm), revela a presença de 1 Me para 17 grupos metileno, ou seja, uma taxa de inserção estimada em torno de 5% de propileno.

Cabe salientar que as extremidades insaturadas de cadeia, originadas de reações de terminação por eliminação β , não foram detectadas nos espectros obtidos por RMN ¹³C e RMN¹H (entre 2,0 e 6,0 ppm).

Conclusão

A associação do ligante *t*-Bu-N₄ ao Cr(III) levou à obtenção de um novo catalisador para polimerização de olefinas, cuja natureza não pode ser completamente elucidada. Os sistemas formados pela adição de cocatalisadores (MAO ou Et₃Al₂Cl₃) são relativamente ativos e de vida longa, conduzindo à formação de polietilenos de massas molares elevadas. A homopolimerização do propileno não foi possível, porém foram obtidos copolímeros etileno-propileno. A atividade do sistema catalítico *t*-Bu-N₄CrCl₂+Cl⁻/Et₃Al₂Cl₃ é mais alta que a do sistema *t*-Bu-N₄CrCl₂+Cl⁻/MAO.

Agradecimentos

Os autores agradecem a todos os colegas que contribuíram para a realização deste trabalho, ao CNRS pelo suporte financeiro (Programa Catalyse et catalyseurs pour l'industrie et l'environnement), à C.R.W. pelas análises SEC. S.P.M. agradece à CAPES pela bolsa de doutorado e a Politeno Ind. e Com. S/A.

Referências Bibliográficas

- 1. Theopold K.H.- Eur. J. Inorg. Chem., p. 15 (1998)
- Thomas B.J., Theopold K.H.- J. Am. Chem. Soc., 110, p. 5902 (1988)
- Coles M.P., Dalby C.I., Gibson V.C., Clegg W., Elsegood M.R.J.- J. Chem. Soc., Chem. Commun., p.1709 (1995)
- Gibson V.C., Maddox P.J., Newton C., Redshaw C., Solan G.A., White A.J.P., Williams D.J., J. Chem. Soc.- Chem. Commun., p.1651 (1998)
- Kim W., Fevola M.J., Liable-Sands L.M., Rheingold A.L., Theopold K.H.- Organometallics, 17, p.4541 (1998)
- 6. Theopold K.H., Eur. J. Inorg. Chem., p.15 (1998)
- Thomas B.J., Theopold K.H., J. Am. Chem. Soc., 110, p.5902 (1998)
- Coles M.P., Dalby C.I., Gibson V.C., Clegg W., Elsegood M.R.J., J. Chem. Soc., Chem. Commun., p.1709 (1995)
- Gibson V.C., Maddox P.J., Newton C., Redshaw C., Solan G.A., White A.J.P., Williams D.J., J. Chem. Soc., Chem. Commun., p.1651 (1998)
- Kim W., Fevola M.J., Liable-Sands L.M., Rheingold A.L., Theopold K.H., Organometallics, 17, p.4541 (1998)
- Meneghetti S.M.P. "Polymérisation et Copolimérisation d'Olefines Catalysées par des Complexes de Métaux de Transition avc des Ligands Chélatants Polyazotés", Tese de Doutorado, Université Louis Pasteur, Strasbourg, França (2000)
- Meneghetti S.M.P., Lutz P J, Fisher J., Kress J., Polyhedron, 20, p.2705 (2001)
- Meneghetti S.M.P., Lutz P J, Kress J., Organometallics, 20, p.5050 (2001)
- Perrin D.D., Armarengo W.L.F. *Purification of Labora*tory Chemicals, 3rd Ed., Pergamon Press, New York, (1988)
- 15. Chen E.Y., Marks T.J., Chem. Rev., 100, p.1391 (2000)

Recebido: 10/10/02 Aprovado: 17/02/03