Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/doi/10.1590/0104-1428.2276
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Cardanol-based thermoset plastic reinforced by sponge gourd fibers (Luffa cylindrica)

Silva, André Leandro da; Silva, Lucas Renan Rocha da; Camargo, Isabelle de Andrade; Agostini, Deuber Lincon da Silva; Rosa, Derval dos Santos; Oliveira, Diego Lomonaco Vasconcelos de; Fechine, Pierre Basílio Almeida; Mazzetto, Selma Elaine

Downloads: 1
Views: 1097

Abstract

A growing global trend for maximum use of natural resources through new processes and products has enhanced studies and exploration of renewable natural materials. In this study, cardanol, a component of the cashew nut shell liquid (CNSL), was used as a building block for the development of a thermosetting matrix, which was reinforced by raw and modified sponge gourd fibers (Luffa cylindrica). DSC and TG results showed that among biocomposites, the one reinforced by sponge gourd fibers treated with NaOH 10 wt% (BF10) had the highest thermal stability, besides the best performance in the Tensile testing, showing good incorporation, dispersion, and adhesion to polymer matrix, observed by SEM. After 80 days of simulated soil experiments, it has been discovered that the presence of treated fiber allowed better biodegradability behavior to biocomposites. The biobased thermoset plastic and biocomposites showed a good potential to several applications, such as manufacturing of articles for furniture and automotive industries, especially BF10.

Keywords

biobased plastic, biodegradable, composites, lignocellulosic fibers.

References

1. John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364. http://dx.doi.org/10.1016/j.carbpol.2007.05.040.

2. Harvey, M. T., & Caplan, C. (1940). Cashew nut shell liquid. Industrial & Engineering Chemistry, 3(10), 1306-1310. http://dx.doi.org/10.1021/ie50370a008.

3. Manjula, S., Sudha, J. D., Bera, S. C., & Pillai, C. K. S. (1985). Polymeric resin from renewable resources: studies on polymerization of the phenolic component of coconut shell tar. Journal of Applied Polymer Science, 30(4), 1767-1771. http://dx.doi.org/10.1002/app.1985.070300440.

4. Tyman, H. P., Wilczynski, D., & Kashani, M. A. (1978). Compositional studies on technical cashew nutshell liquid (CNSL) by chromatography and mass spectroscopy. Journal of the American Oil Chemists’ Society, 55(9), 663-668. http://dx.doi.org/10.1007/BF02682455.

5. Mohapatra, S., & Nando, G. B. (2014). Cardanol: a green substitute for aromatic oil as a plasticizer in natural rubber. Royal Society of Chemistry Advances, 4, 15406-15418. http://dx.doi.org/10.1039/c3ra46061d.

6. Balachandran, V. S., Jadhav, S. R., Vemula, P. K., & John, G. (2013). Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chemical Society Reviews, 42(2), 427-438. http://dx.doi.org/10.1039/C2CS35344J. PMid:23114456.

7. Corrales, F., Vilaseca, F., Llop, M., Gironès, J., Méndez, J. A., & Mutjè, P. (2007). Chemical modification of jute fibers for production of green-composites. Journal of Hazardous Materials, 144(3), 730-735. http://dx.doi.org/10.1016/j.jhazmat.2007.01.103. PMid:17320283.

8. Zou, L., Jin, H., Lu, W., & Li, X. (2009). Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers. Materials Science and Engineering C, 29(4), 1375-1379. http://dx.doi.org/10.1016/j.msec.2008.11.007.

9. Rao, K. M. M., & Rao, K. M. (2007). Extraction and tensile properties of natural fibers: vakka, date and bamboo. Composite Structures, 77(3), 288-295. http://dx.doi.org/10.1016/j.compstruct.2005.07.023.

10. Kumar, V., Kushwaha, P. K., & Kumar, R. (2011). Impedance-spectroscopy analysis of oriented and mercerized bamboo fiber-reinforced epoxy composite. Journal of Materials Science, 46(10), 3445-3451. http://dx.doi.org/10.1007/s10853-011-5249-6.

11. Sen, T., & Reddy, H. N. J. (2011). Applications of sisal, bamboo, coir and jute and natural composites in structural up gradation. International Journal of Inovation Management and Technology, 2(3), 186-191. http://dx.doi.org/10.7763/IJIMT.2011.V2.129.

12. Chandramohan, D., & Marimuthu, K. (2011). A review on natural fibers. International Journal of Research and Reviews in Applied Sciences, 8(2), 194-206. Retrieved 20 January 2015, from http://www.arpapress.com/Volumes/Vol8Issue2/IJRRAS_8_2_09.pdf

13. Dahlke, B., Larbig, H., Scherzer, H. D., & Poltrock, R. J. (1998). Natural fiber reinforced foams based on renewable resources for automotive interior applications. Journal of Cellular Plastics, 34(4), 361-379. http://dx.doi.org/10.1177/0021955X9803400406.

14. Colom, X., Carrasco, F., Pages, P., & Canavate, J. (2003). Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Composites Science and Technology, 63(2), 161-169. http://dx.doi.org/10.1016/S0266-3538(02)00248-8.

15. Esmeraldo, M. A., Barreto, A. C. H., Freitas, J. E., Fechine, P. B. A., Sombra, A. B. S., Corradini, E., Mele, G., Maffezzoli, A., & Mazzetto, S. E. (2010). Dwarf-green coconut fibers: a versatile natural renewable raw bioresource. Treatment, morphology, and physicochemical properties. BioResources, 5(4), 2478-2501. Retrieved 20 January 2015, from http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_05_4_2478_Esmeraldo_GFFSCMMM_Draft_Green_Coconut_Fibers

16. Barreto, A. C. H., Esmeraldo, M. A., Rosa, D. S., Fechine, P. B. A., & Mazzetto, S. E. (2010). Cardanol biocomposites reinforced with juta fiber: microstructure, biodegradability, and mechanical properties. Polymer Composites, 31(11), 1928-1937. http://dx.doi.org/10.1002/pc.20990.

17. Barreto, A. C. H., Rosa, D. S., Fechine, P. B. A., & Mazzetto, S. E. (2011). Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Composites Part A: Applied Science and Manufacturing, 42(5), 492-500. http://dx.doi.org/10.1016/j.compositesa.2011.01.008.

18. Barreto, A. C. H., Costa, A. E., Jr., Freitas, J. E. B., Rosa, D. S., Barcellos, W. M., Freire, F. N. A., Fechine, P. B. A., & Mazzetto, S. E. (2013). Biocomposites from dwarf-green Brazilian coconut impregnated with cashew nut shell liquid resin. Journal of Composite Materials, 47(4), 459-466. http://dx.doi.org/10.1177/0021998312441041.

19. Mazali, I., & Alves, O. L. (2005). Morphosynthesis: high fidelity inorganic replica of the fibrous network of loofa sponge (Luffa cylindrica). Academia Brasileira de Ciências, 77(1), 25-31.

20. Satyanarayana, K. G., Guimarães, J. L., & Wypych, F. (2007). Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites. Part A, Applied Science and Manufacturing, 38(7), 1694-1709. http://dx.doi.org/10.1016/j.compositesa.2007.02.006.

21. Tanobe, V. O. A., Sydenstricker, T. H. D., Munaro, M., & Amico, S. C. (2007). A comprehensive characterization of chemically treated sponge-gourds (Luffa cylindrical). Polymer Testing, 24(4), 474-482. http://dx.doi.org/10.1016/j.polymertesting.2004.12.004.

22. Habibi, Y., El-Zawawy, W. K., Ibrahim, M. M., & Dufresne, A. (2008). Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Composites Science and Technology, 68(7-8), 1877-1885. http://dx.doi.org/10.1016/j.compscitech.2008.01.008.

23. Le Troedec, M. L., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., Gloaguen, V., & Krausz, P. (2008). Influence of various chemical treatments on the composition and structure of hemp fiber. Composites Part A: Applied Science and Manufacturing, 39(3), 514-522. http://dx.doi.org/10.1016/j.compositesa.2007.12.001.

24. Kumar, P. P., Paramashivappa, P. J., Vithayathil, P. J., Subra Rao, P. V., & Srinivasa, R. A. (2002). Process for isolation of cardanol from technical cashew (Anacardium occidentale.) nut shell liquid. Journal of Agricultural and Food Chemistry, 50(16), 4705-4708. http://dx.doi.org/10.1021/jf020224w. PMid:12137500.

25. American Society for Testing and Materials – ASTM. (2006). ASTM D2765-11: standard test methods for determination of gel content and swell ratio of crosslinked ethylene plastics. West Conshohocken: ASTM International.

26. American Society for Testing and Materials – ASTM. (2014). ASTM D638-14: standard test method for tensile properties of plastics. West Conshohocken: ASTM International.

27. American Society for Testing and Materials – ASTM. (2014). ASTM D3039/D3039M-14: standard test method for tensile properties of polymer matrix composite materials. West Conshohocken: ASTM International.

28. Silva, A. L., Costa, A. E., Jr., Nascimento, D. M., Rosa, M. F., Fechine, P. B. A., & Mazzetto, S. E. (2013). Efeito do tratamento alcalino e branqueamento na morfologia e no índice de cristalinidade da fibra de bucha vegetal (Luffa cylindrical). In Anais do 53º Congresso Brasileiro de Química (pp. 2). Rio de Janeiro: Associação Brasileira de Química. Retrieved 17 September 2014, from http://www.abq.org.br/cbq/2013/trabalhos/12/2405-16576.html

29. Silva, A. L., Costa, A. E., Jr., Nascimento, D. M., Silva, M. A. S., Sombra, A. S. B., Rosa, M. F., Fechine, P. B. A., & Mazzetto, S. E. (2013). Modificações espectroscópicas vibracionais e nas propriedades dielétricas em fibras de bucha vegetal (Luffa cylindrica) após tratamento químico. In Anais do 53º Congresso Brasileiro de Química (pp. 3). Rio de Janeiro: Associação Brasileira de Química. Retrieved 17 September 2014, from http://www.abq.org.br/cbq/2013/trabalhos/12/2408-16576.html

30. American Society for Testing and Materials – ASTM. (2015). ASTM D3418-15: standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry, West Conshohocken: ASTM International.

31. Maffezzoli, A., Calò, E., Zurlo, S., Mele, G., Tarzia, A., & Stifani, C. (2004). Cardanol Based Matrix Biocomposites Reinforced With Natural Fibers. Composites Science and Technology, 64(6), 839-845. http://dx.doi.org/10.1016/j.compscitech.2003.09.010.

32. Modibbo, U. U., Alyiu, B. A., Nkafamiya, I. I., & Manji, A. J. (2007). The effect of moisture imbibition on cellulosic bast fibres as industrial raw materials. Internacional Journal of Physical Science, 2(7), 163-168. Retrieved 20 October 2014, from http://www.academicjournals.org/journal/IJPS/article-abstract/69B629713202

33. Khan, A. F., & Ahmad, S. R. (1996). Chemical Modification and spectroscopic analysis of Jute fibre. Polymer Degradation & Stability, 52(3), 335-340. http://dx.doi.org/10.1016/0141-3910(95)00240-5.

34. Antich, P., Vázquez, A., Mondragon, I., & Bernal, C. (2006). Mechanical behavior of high impact polystyrene reinforced with short sisal fibers. Composites Part A: Applied Science and Manufacturing, 37(1), 139-150. http://dx.doi.org/10.1016/j.compositesa.2004.12.002.

35. Szczesniak, L., Rachocki, A., & Tritt-Goc, J. (2008). Glass transition temperature and thermal decomposition of cellulose powder. Cellulose (London, England), 15(3), 445-451. http://dx.doi.org/10.1007/s10570-007-9192-2.

36. Vázquez, G., González, S., Freire, S., & Antorrena, G. (1997). Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resin. Bioresource Technology, 60(3), 191-198. http://dx.doi.org/10.1016/S0960-8524(97)00030-8.

37. Kharade, A. Y., & Kale, D. D. (1998). Effect of lignin on phenolic novolak resins and moulding powder. European Polymer Journal, 34(2), 201-205. http://dx.doi.org/10.1016/S0014-3057(97)00118-3.

38. Rosa, D. S., Bardi, M. A. G., Guedes, C. G. F., & Angelis, D. A. (2009). Role of polyethylene‐graft‐glycidyl methacrylate compatibilizer on the biodegradation of poly (ε‐caprolactone)/cellulose acetate blends. Polymers for Advanced Technologies, 20(12), 863-870. http://dx.doi.org/10.1002/pat.1302.

39. Kyrikou, J., & Briassoulis, D. (2007). Biodegradation of agricultural plastic films: a critical review. Journal of Polymers and the Environment, 15(12), 125-150. http://dx.doi.org/10.1007/s10924-007-0053-8.

40. Sun, R. C., & Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrasonics Sonochemistry, 9(2), 85-93. http://dx.doi.org/10.1016/S1350-4177(01)00106-7. PMid:11794023.
588371d47f8c9d0a0c8b4aa0 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections