Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/doi/10.1590/0104-1428.07916
Polímeros: Ciência e Tecnologia
Original Article

Reinforcement of poly (vinyl alcohol) films with alpha-chitin nanowhiskers

Hugo Lisboa

Downloads: 0
Views: 1272

Abstract

Abstract: Composites Films were produced using Poly (Vinyl Alcohol) as the soft material and reinforced with Chitin Nanowhiskers(NWCH) as the rigid material. The present work studies the reinforcing mechanisms of NWCH in PVA films, made through a solvent casting technique and characterized for their calorimetric, swelling and mechanical properties. DSC tests revealed a sharp increase of 45 °C in glass transition temperatures with only 1.5% NWCH, while melting temperature had a small increases suggesting an anti-plasticizing effect. Swelling tests revealed decreasing hygoscopy when NWCH volume fraction increases. Estimates for elastic tensile modulus using a model that predicts the formation of a percolating network were not consistent with the experimental data of tensile tests suggesting that contrary to the reinforcement with cellulose nanowhiskers the percolating network is not primarily responsible for the reinforcement of the films. By adjusting the Halpin-Tsai equations, modified by Nielsen it was found that the mechanical properties were mainly influenced by the packing of the NWCH.

Keywords

Chitin, Nanocomposites, PVA, Nanowhiskers, Reinforcement

References

Pillai, C. K. S. (2014). Recent advances in biodegradable polymeric materials. Materials Science and Technology, 30(5), 558-566. http://dx.doi.org/10.1179/1743284713Y.0000000472.

Luckachan, G. E., & Pillai, C. K. S. (2011). Biodegradable polymers-a review on recent trends and emerging perspectives. Journal of Polymers and the Environment , 19(3), 637-676. http://dx.doi.org/10.1007/s10924-011-0317-1.

Tan, B. K., Ching, Y. C., Poh, S. C., Abdullah, L. C., & Gan, S. N. (2015). A review of natural fiber reinforced poly (vinyl alcohol) based composites: Application and opportunity. Polymers, 7(11), 2205-2222. http://dx.doi.org/10.3390/polym7111509.

Ooi, Z. X., Ismail, H., Bakar, A. A., & Aziz, N. A. A. (2012). Properties of the crosslinked plasticized biodegradable poly (vinyl alcohol)/rambutan skin waste flour blends. Journal of Applied Polymer Science, 125(2), 1127-1135. http://dx.doi.org/10.1002/app.34860.

Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133-1174. PMid:25738328. http://dx.doi.org/10.3390/md13031133.

Arbia, W., Arbia, L., Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods-a review. Food Technology and Biotechnology , 51(1), 12-25. Retrieved in 2016, July 14, from http://www.ftb.com.hr/images/pdfarticles/2013/Vol.51_No.1/ftb_51-1_012-025.pdf

Niamsa, N., & Baimark, Y. (2009). Preparation and characterization of highly flexible chitosan films for use as food packaging. American Journal of Food Technology , 4(4), 162-169. http://dx.doi.org/10.3923/ajft.2009.162.169.

Liu, D., Sun, X., Tian, H., Maiti, S., & Ma, Z. (2013). Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose, 20(6), 2981-2989. http://dx.doi.org/10.1007/s10570-013-0073-6.

Lu, Y., Weng, L., & Zhang, L. (2004). Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules , 5(3), 1046-1051. PMid:15132699. http://dx.doi.org/10.1021/bm034516x.

Gonzalez, J. S., Ludueña, L. N., Ponce, A., & Alvarez, V. A. (2014). Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Materials Science and Engineering C, 34, 54-61. PMid:24268233. http://dx.doi.org/10.1016/j.msec.2013.10.006.

Castro, C., Vesterinen, A., Zuluaga, R., Caro, G., Filpponen, I., Rojas, O. J., Kortaberria, G., & Gañán, P. (2014). In situ production of nanocomposites of poly (vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose, 21(3), 1745-1756. http://dx.doi.org/10.1007/s10570-014-0170-1.

Wang, W., Zhang, X., Teng, A., & Liu, A. (2017). Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. International Journal of Biological Macromolecules, 103, 226-233. PMid:28495633. http://dx.doi.org/10.1016/j.ijbiomac.2017.05.027.

Wu, X., Lu, C., Han, Y., Zhou, Z., Yuan, G., & Zhang, X. (2016). Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Composites Science and Technology , 124, 44-51. http://dx.doi.org/10.1016/j.compscitech.2016.01.012.

Thakore, S. I. (2017). Chitin Based Rubber Nanocomposites. In Visakh, P. M. (Ed.), Rubber Based Bionanocomposites (pp. 35-50). Berlin: Springer International Publishing.

Frisch, H. L., & Hammersley, J. M. (1963). Percolation processes and related topics. Journal of the Society for Industrial and Applied Mathematics, 11(4), 894-918. http://dx.doi.org/10.1137/0111066.

Flandin, L., Cavaillé, J. Y., Bidan, G., & Brechet, Y. (2000). New nanocomposite materials made of an insulating matrix and conducting fillers: processing and properties. Polymer Composites, 21(2), 165-174. http://dx.doi.org/10.1002/pc.10174.

Azizi Samir, M. A. S., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612-626. PMid:15762621. http://dx.doi.org/10.1021/bm0493685.

Sriupayo, J., Supaphol, P., Blackwell, J., & Rujiravanit, R. (2005). Preparation and characterization of α-chitin whisker-reinforced poly (vinyl alcohol) nanocomposite films with or without heat treatment. Polymer, 46(15), 5637-5644. http://dx.doi.org/10.1016/j.polymer.2005.04.069.

Roohani, M., Habibi, Y., Belgacem, N. M., Ebrahim, G., Karimi, A. N., & Dufresne, A. (2008). Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal, 44(8), 2489-2498. http://dx.doi.org/10.1016/j.eurpolymj.2008.05.024.

Uddin, A. J., Fujie, M., Sembo, S., & Gotoh, Y. (2012). Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydrate Polymers , 87(1), 799-805. http://dx.doi.org/10.1016/j.carbpol.2011.08.071.

Sonker, A. K., Tiwari, N., Nagarale, R. N., & Verma, V. (2016). Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties. Journal of Polymer Science. Part A, Polymer Chemistry, 54(16), 2515-2525. http://dx.doi.org/10.1002/pola.28129.

Chiellini, E., Corti, A., D’Antone, S., & Solaro, R. (2003). Biodegradation of poly (vinyl alcohol) based materials. Progress in Polymer Science , 28(6), 963-1014. http://dx.doi.org/10.1016/S0079-6700(02)00149-1.

Cerpakovska, D., & Kalnins, M. (2012). Barrier and sorption properties of porous poly (vinyl alcohol)–cellulose fibre composites. Proceedings of the Estonian Academy of Sciences, 61(3), 178-184. http://dx.doi.org/10.3176/proc.2012.3.06.

Chiellini, E., Cinelli, P., Magni, S., Miele, S., & Palla, C. (2008). Fluid biomulching based on poly (vinyl alcohol) and fillers from renewable resources. Journal of Applied Polymer Science, 108(1), 295-301. http://dx.doi.org/10.1002/app.27571.

Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development, 32(2), 501-529. http://dx.doi.org/10.1007/s13593-011-0068-3.

Zheng, Q., Cai, Z., & Gong, S. (2014). Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2(9), 3110-3118. http://dx.doi.org/10.1039/C3TA14642A.

Xia, G., Liu, Y., Tian, M., Gao, P., Bao, Z., Bai, X., Yu, X., Lang, X., Hu, S., & Chen, X. (2017). Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 5(17), 3172-3185. http://dx.doi.org/10.1039/C7TB00479F.

Xu, X., Yang, Y. Q., Xing, Y. Y., Yang, J. F., & Wang, S. F. (2013). Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes. Carbohydrate Polymers, 98(2), 1573-1577. PMid:24053842. http://dx.doi.org/10.1016/j.carbpol.2013.07.065.

Cavalcanti, A. S. R. R. M., Furtado, G. T., Lisboa, H. M., & Fook, M. V. L. (2013). Morphological characterization of chitin extraction. Journal of Chitin and Chitosan Science , 1(2), 157-160. http://dx.doi.org/10.1166/jcc.2013.1018.

Zhang, C., Zhuang, X., Li, X., Wang, W., Cheng, B., Kang, W., Cai, Z., & Li, M. (2016). Chitin nanowhisker-supported sulfonated poly (ether sulfone) proton exchange for fuel cell applications. Carbohydrate Polymers, 140, 195-201. PMid:26876844. http://dx.doi.org/10.1016/j.carbpol.2015.12.029.

Blackwell, J. (1988). Physical methods for the determination of chitin structure and conformation. Methods in Enzymology, 161, 435-442. http://dx.doi.org/10.1016/0076-6879(88)61053-6.

Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Argüelles-Monal, W., Desbrieres, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42(8), 3569-3580. http://dx.doi.org/10.1016/S0032-3861(00)00713-8.

Markovic, G., & Visakh, M. P. (2017). Applications of chitin based rubber nanocomposites. In Visakh, P. M. (Ed.), Rubber based bionanocomposites (pp. 51-69). Berlin: Springer International Publishing.

Corvaglia, S., Rodriguez, S., Bardi, G., Torres, F. G., & Lopez, D. (2016). Chitin whiskers reinforced carrageenan films as low adhesion cell substrates. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(11), 574-580. http://dx.doi.org/10.1080/00914037.2016.1149846.

Ma, L., Liu, M., Peng, Q., Liu, Y., Luo, B., & Zhou, C. (2016). Crosslinked carboxylated SBR composites reinforced with chitin nanocrystals. Journal of Polymer Research , 23(7), 1-11. http://dx.doi.org/10.1007/s10965-016-1025-2.

Oun, A. A., & Rhim, J.-W. (2017). Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydrate Polymers, 169, 467-479. PMid:28504170. http://dx.doi.org/10.1016/j.carbpol.2017.04.042.

Takayanagi, M., Uemura, S., & Minami, S. (1964). Application of equivalent model method to dynamic rheo‐optical properties of crystalline polymer. Journal of Polymer Science: Polymer Symposia, 5(1), 113-122.

Ouali, N., Cavaillé, J. Y., & Perez, J. (1991). Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plastics. Rubber and Composites Processing and Applications, 16(1), 55-60.

Favier, V., Dendievel, R., Canova, G., Cavaille, J. Y., & Gilormini, P. (1997). Simulation and modeling of three-dimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Materialia, 45(4), 1557-1565. http://dx.doi.org/10.1016/S1359-6454(96)00264-9.

Affdl, J. C., & Kardos, J. L. (1976). The Halpin‐Tsai equations: a review. Polymer Engineering and Science, 16(5), 344-352. http://dx.doi.org/10.1002/pen.760160512.

Landel, R. F., & Nielsen, L. E. (1993). Mechanical properties of polymers and composites. Boca Raton: CRC Press.

Nielsen, L. E. (1970). Generalized equation for the elastic moduli of composite materials. Journal of Applied Physics, 41(11), 4626-4627. http://dx.doi.org/10.1063/1.1658506.

Morin, A., & Dufresne, A. (2002). Nanocomposites of chitin whiskers from Riftia tubes and poly (caprolactone). Macromolecules, 35(6), 2190-2199. http://dx.doi.org/10.1021/ma011493a.

Lee, J. H., Park, S. H., & Kim, S. H. (2013). Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromolecular Research, 21(11), 1218-1225. http://dx.doi.org/10.1007/s13233-013-1160-0.
 

5b7c4c8b0e88258a54896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections