Polímeros: Ciência e Tecnologia
http://www.revistapolimeros.org.br/doi/10.1590/0104-1428.03116
Polímeros: Ciência e Tecnologia
Original Article

Non-isothermal decomposition kinetics of conductive polyaniline and its derivatives

William Ferreira Alves; José Antonio Malmonge; Luiz Henrique Capparelli Mattoso; Eliton Souto de Medeiros

Downloads: 0
Views: 181

Abstract

Abstract: The non-isothermal decomposition kinetics of conductive polyaniline (PANI) and its derivatives, poly(o-methoxyaniline) (POMA) and poly(o-ethoxyaniline) (POEA), was investigated by thermogravimetric analysis (TGA), under inert and oxidative atmospheres, using Flynn-Wall-Ozawa’s approach to assess the kinetic parameters of the decomposition process. The order of reaction was found to be dependent on the degree of conversion indicating that both the early and the later stages of polymer degradation were next the zero or pseudo zero order kinetics, whereas the intermediate stages follow a first order kinetics. The activation energy was found to be dependent on both the degree of conversion and PANI derivative. Activation energy values vary from 125 to 250 kJ/mol, to decompositions carried out under nitrogen, and 75 to 120 kJ/mol to oxidative atmosphere. Parent PANI presented the best thermal stability and suggesting that thermal stability is also influenced by derivatization and type of atmosphere used.

Keywords

PANI, POEA, POMA, thermal decomposition, Flynn-Wall-Ozawa’s approach

References

Bhadra, S., Khastgir, D., Singha, N. K., & Lee, J. H. (2009). Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science , 34(8), 783-810. http://dx.doi.org/10.1016/j.progpolymsci.2009.04.003.

Saranya, K., Rameez, M., & Subramania, A. (2015). Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview. European Polymer Journal, 66, 207-227. http://dx.doi.org/10.1016/j.eurpolymj.2015.01.049.

Ćirić-Marjanović, G. (2013). Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals, 177, 1-47. http://dx.doi.org/10.1016/j.synthmet.2013.06.004.

Picciani, P. H. S., Medeiros, E. S., Orts, W. J., & Mattoso, L. H. C. (2011). Advances in electroactive electrospun nanofibers. In Tong Lin (Ed.), Nanofibers - production, properties and functional applications (p. 85-116). Rijeka: InTech. http://dx.doi.org/10.5772/23229.

Prathap, M. U. A., Satpati, B., & Srivastava, R. (2013). Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. Sensors and Actuators B: Chemical, 186, 67-77. http://dx.doi.org/0.1016/j.snb.2013.05.076.

Razak, S. I. A., Wahab, I. F., Fadil, F., Dahli, F. N., Md Khudzari, A. Z., & Adeli, H. (2015). A review of electrospun conductive polyaniline based nanofiber composites and blends: processing features, applications, and future directions. Advances in Materials Science and Engineering, 2015, 1-19. http://dx.doi.org/10.1155/2015/356286.

Matveeva, E. S., Diaz Calleja, R., & Parkhutik, V. P. (1995). Thermogravimetric and calorimetric studies of water absorbed in polyaniline. Synthetic Metals, 72(2), 105-110. http://dx.doi.org/10.1016/0379-6779(94)02335-V.

Tsocheva, D., Zlatkov, T., & Terlemezyan, L. (1998). Thermoanalytical studies of polyaniline ‘Emeraldine base’. Journal of Thermal Analysis and Calorimetry , 53(3), 895-904. http://dx.doi.org/10.1023/A:1010146619792.

Chen, C. H. (2002). Thermal studies of polyaniline doped with dodecyl benzene sulfonic acid directly prepared via aqueous dispersions. Journal of Polymer Research , 9(3), 195-200. http://dx.doi.org/10.1023/A:1021395726060.

Mattoso, L. H. C., Manohar, S. K., Macdiarmid, A. G., & Epstein, A. J. (1995). Studies on the chemical syntheses and on the characteristics of polyaniline derivatives. Journal of Polymer Science. Part A, Polymer Chemistry, 33(8), 1227-1234. http://dx.doi.org/10.1002/pola.1995.080330805.

Malmonge, L. F., & Mattoso, L. H. C. (1995). Electroactive blends of poly(vinylidene fluoride) and polyaniline derivatives. Polymer, 36(2), 245-249. http://dx.doi.org/10.1016/0032-3861(95)91310-4.

Medeiros, E. S., Galiani, P. G., Moreno, R. M. B., Mattoso, L. H. C., & Malmonge, J. A. (2010). A comparative study of the non-isothermal degradation of natural rubber from Mangabeira (Hancornia speciosa Gomes) and Seringueira (Hevea brasiliensis ). Journal of Thermal Analysis and Calorimetry, 100(3), 1045-1050. http://dx.doi.org/10.1007/s10973-009-0477-6.

Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. http://dx.doi.org/10.1246/bcsj.38.1881.

Ozawa, T. (1975). Critical investigation of methods analysis of thermoanalytical data. Journal of Thermal Analysis, 7(3), 601-617. http://dx.doi.org/10.1007/BF01912021.

Flynn, J. H. (1978). Thermogravimetric analysis and differential thermal analysis. In H. H. G. Jellinek (Eds.), Aspects of degradation and stabilization of polymers (p. 573-615). New York: Elsevier.

Saltan, F., & Akat, H. (2013). Synthesis and thermal degradation kinetics of D–(+)–galactose containing polymers. Polímeros: Ciência e Tecnologia , 23(6), 697-704. http://dx.doi.org/10.4322/polimeros.2014.012.

Vyazovkin, S. (2015). Isoconversional kinetics of thermally stimulated processes . Berlin: Springer. http://dx.doi.org/10.1007/978-3-319-14175-6.

Alves, W. F., Venancio, E. C., Leite, F. L., Kanda, D. H. F., Malmonge, L. F., Malmonge, J. A., & Mattoso, L. H. C. (2010). Thermo-analyses of polyaniline and its derivatives. Thermochimica Acta, 502(1–2), 43-46. http://dx.doi.org/10.1016/j.tca.2010.02.003.

Chan, H. S. O., Gan, L. M., Hor, T. S. A., Seow, S. H., & Zhang, L. H. (1993). Thermal-analysis of conducting polymers. Part 3. Isothermal thermogravimetry of doped and pristine polyaniline. Thermochimica Acta, 225(1), 75-83. http://dx.doi.org/10.1016/0040-6031(93)85084-M.

Souza, N. C., Silva, N. C., Giacometti, J. A., & Oliveira, O. N., Jr. (2006). H-bonding in entrapped water in poly(o-methoxyaniline): Results from a differential scanning calorimetry study. Thermochimica Acta, 441(2), 124-126. http://dx.doi.org/10.1016/j.tca.2005.12.016.

Wang, S.-X., Tan, Z.-C., Li, Y.-S., Sun, L.-X., & Li, Y. (2008). A kinetic analysis of thermal decomposition of polyaniline/ZrO2 Composite. Journal of Thermal Analysis and Calorimetry, 92(2), 483-487. http://dx.doi.org/10.1007/s10973-007-8356-5.

Doca, N., Vlase, G., Vlase, T., Perta, M., Ilia, G., & Plesu, N. (2009). TG, EGA and kinetic study by non-isothermal decomposition of a polyaniline with different dispersion degree. Journal of Thermal Analysis and Calorimetry, 97(2), 479-484. http://dx.doi.org/10.1007/s10973-009-0217-y.

Zabihi, O., & Khodabandeh, A. (2013). Understanding of thermal/thermo-oxidative degradation kinetics of polythiophene nanoparticles. Journal of Thermal Analysis and Calorimetry , 112(3), 1507-1513. http://dx.doi.org/10.1007/s10973-012-2675-x.

Upadhyay, J., & Kumar, A. (2014). Investigation of structural, thermal and dielectric properties of polypyrrole nanotubes tailoring with silver nanoparticles. Composites Science and Technology, 97, 55-62. http://dx.doi.org/10.1016/j.compscitech.2014.04.003.

Zhang, S., Wang, S., Huang, Z., Li, Y., & Tan, Z. (2015). A kinetic analysis of thermal decomposition of polyaniline and its composites with rare earth oxides. Journal of Thermal Analysis and Calorimetry, 119(3), 1853-1860. http://dx.doi.org/10.1007/s10973-014-4309-y.

Corradini, E., Teixeira, E. M., Paladin, P. D., Agnelli, J. A., Silva, O. R. R. F., & Mattoso, L. H. C. (2009). Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry , 97(2), 483-487. http://dx.doi.org/10.1007/s10973-008-9693-8.

Pielichowski, K. (1997). Kinetic analysis of the thermal decomposition of polyaniline. Solid State Ionics, 104(1-2), 123-132. http://dx.doi.org/10.1016/S0167-2738(97)00396-2.

Medeiros, E. S., Moreno, R. M. B., Ferreira, F. C., Alves, N., Job, A. E., Gonçalves, P. S., & Mattoso, L. H. C. (2003). Thermogravimetric studies of the decomposition kinetics of four different hevea rubber clones using Ozawa’s Approach. Progress in Rubber, Plastics and Recycling Technology, 19(3), 189-204. http://dx.doi.org/10.1179/174328906X79932.

Coats, A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68-69. http://dx.doi.org/10.1038/201068a0.

Broido, A. (1969). A simple, sensitive graphical method of treating thermogravimetric analysis data. Journal of Polymer Science. Part A-2, Polymer Physics, 7(10), 1761-1773. http://dx.doi.org/10.1002/pol.1969.160071012.

Horowitz, H. H., & Metzger, G. (1963). A new analysis of thermogravimetric traces. Analytical Chemistry, 35(10), 1464-1468. http://dx.doi.org/10.1021/ac60203a013.
 

5bb66b360e88250b64bd3c07 polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections