Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/doi/10.1590/0104-1428.02616
Polímeros: Ciência e Tecnologia
Original Article

Hybrids membranes with potential for fuel cells – Part 3: extruded films of nanocomposites based on sepiolite and PC/sulfonated PC blends

Ana Catarina de Oliveira Gomes; Eduardo Henrique Backes; Adhemar Colla Ruvolo Filho; Caio Marcio Paranhos; Fábio Roberto Passador; Luiz Antonio Pessan

Downloads: 0
Views: 1113

Abstract

Abstract: Fuel Cells based in polymers are an alternative for the conventional energetic matrices. However, materials currently available still present disadvantages to overcome. Membranes of polycarbonate (PC)/sulfonated polycarbonate (PCs) blend/sepiolite nanocomposites have previously been studied by the authors, resulting in good mechanical properties and promising properties of vapor transmission and ionic migration resistance. However, their production in large scale is still a challenge. The aim of this work was the development further the formulation and processing of the previously studied material. Films of PC/PCs blends (50/50 wt%) with different content of sepiolite clay, with and without chemical modification, have been prepared in an extruder and evaluated by FTIR, XRD, DSC, TGA, DMA, tension strength and water vapor transmission (WVT). Even after two processing steps, the blend-based nanocomposites keep good thermal and mechanical properties. However, changes in WVT were observed with respect to data obtained in previous studies.

Keywords

polymeric membrane, nanocomposite, fuel cell, polymeric electrolyte

References

1 Larminie, J., & Dicks, A. (2003). Fuel cell systems explained. Chichester: John Wiley. http://dx.doi.org/10.1002/9781118878330.

2 O’Hare, R. P., Cha, S. W., Colella, W., & Prinz, F. B. (2006). Fuel cells fundamentals. New York: John Wiley.

3 Wu, J., Yuan, X. Z., Martin, J. J., Wang, H., Zhang, J., Shen, J., Wu, S., & Merida, W. (2008). A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources, 184(1), 104-119. http://dx.doi.org/10.1016/j.jpowsour.2008.06.006.

4 Pinto, B. P., Santa Maria, L. C., & Sena, M. E. (2007). Sulfonated poly(ether imide): A versatile route to prepare functionalized polymers by homogenous sulfonation. Materials Letters, 61(11-12), 2540-2543. http://dx.doi.org/10.1016/j.matlet.2006.09.060.

5 Park, C. H., Lee, C. H., Guiver, M. D., & Lee, Y. M. (2011). Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 36(11), 1443-1498. http://dx.doi.org/10.1016/j.progpolymsci.2011.06.001.

6 Ehrenstein, G. W., & Kabelka, J. F. (1992). Reinforced plastics. In F. Ullmann (Ed.), Ullmann’s encyclopedia of industrial chemistry (Vol. 28, Cap. 8, pp. 603-612). Berlin: VCH Publishers.

7 Ruiz-Hitzky, E. (2001). Molecular access to intracrystalline tunnels of sepiolite. Journal of Materials Chemistry, 11(1), 86-91. http://dx.doi.org/10.1039/b003197f.

8 Gomes, A. C. O., Uieda, B., Tamashiro, A. A., Ruvolo Filho, A. C., Pessan, L. A., & Paranhos, C. M. (2014). Membranas híbridas com potencial uso em células a combustível - parte 1: nanocompósitos de poli(eterimida) sulfonada. Polímeros: Ciência e Tecnologia., 24(4), 464-473. http://dx.doi.org/10.1590/0104-1428.1131.

9 Gomes, A. C. O., Machado, I. M. M., Ruvolo, A. C., Fo., Pessan, L. A., & Paranhos, C. M. (2014). Membranas híbridas com potencial uso em células a combustível - parte 2: nanocompósitos de poli(carbonato) sulfonado. Polímeros: Ciência e Tecnologia, 24(3), 402-410. http://dx.doi.org/10.4322/polimeros.2013.049.

10 Lakshmi, R. T. P. S., Bhattacharya, S., & Varma, I. K. (2006). Effect of sulfonation on thermal properties of poly (ether imide). High Performance Polymers , 18(2), 115-126. http://dx.doi.org/10.1177/0954008306056503.

11 Pinto, B. P., Santa Maria, L. C., & Sena, M. E. (2007). Sulfonated poly(ether imide): a versatile route to prepare functionalized polymers by homogenous sulfonation. Materials Letters, 61(3), 2540-2543. http://dx.doi.org/10.1016/j.matlet.2006.09.060.

12 Sanchez, J.-Y., Chabert, F., Iojoiu, C., Salomon, J., El Kissi, N., Piffard, Y., Marechal, M., Galiano, H., & Mercier, R. (2007). Extrusion: an environmentally friendly process for PEMFC membrane elaboration. Electrochimica Acta, 53(4), 1584-1595. http://dx.doi.org/10.1016/j.electacta.2007.04.022.

13 Alkan, M., Tekin, G., & Namli, H. (2005). FTIR and zeta potential measurements of sepiolite treated with some organosilanes. Microporous and Mesoporous Materials , 84(1-3), 75-83. http://dx.doi.org/10.1016/j.micromeso.2005.05.016.

14 Genies, C., Mercier, R., Sillion, B., Cornet, N., Gebel, G., & Pineri, M. (2001). Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer, 42(2), 359-373. http://dx.doi.org/10.1016/S0032-3861(00)00384-0.

15 Smitha, B., Sridhar, S., & Khan, A. A. (2003). Synthesis and characterization of proton conducting polymer membranes for fuel cells. Journal of Membrane Science , 225(1-2), 63-76. http://dx.doi.org/10.1016/S0376-7388(03)00343-0.

16 Abts, G., Eckel, T., & Wehrmann, R. (1992). Polycarbonates. In F. Ullmann (Ed.), Ullmann’s encyclopedia of industrial chemistry (Vol. 21, Cap. 2, pp. 207-214). Berlin: VCH Publishers.

17 Hevesut, H., Otsuka, H., & Imai, N. (1969). Infrared study of sepiolite and palygorskite on heating. The American Mineralogist, 53(nov-dec), 1613-1624.

18 Turhan, Y., Turan, P., Doĝan, M., Alkan, M., Namli, H., & Demirbas, O. (2008). Characterization and adsorption properties of chemically modified sepiolite. Industrial & Engineering Chemistry Research, 47(6), 1883-1895. http://dx.doi.org/10.1021/ie070506r.

19 Hande, V. R., Rath, S. K., Rao, S., & Patri, M. (2011). Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM). Journal of Membrane Science, 372(1-2), 40-48. http://dx.doi.org/10.1016/j.memsci.2011.01.042.

20 de la Orden, M. U., Pascual, D., Antelo, A., Arranz-Andrés, J., Lorenzo, V., & Martínez Urreaga, J. (2013). Polymer degradation during the melt processing of clay reinforced polycarbonate nanocomposites. Polymer Degradation & Stability , 98(5), 1110-1117. http://dx.doi.org/10.1016/j.polymdegradstab.2013.03.024.

21 Lucas, E. F., Soares, B. G., & Monteiro, E. E. C. (2001). Caracterização de polímeros - determinação de peso molecular e análise térmica . Rio de Janeiro: e-Papers.

22 Sepe, M. P. (1998). Dynamic mechanical analysis for plastics engineering . New York: Plastics Design Library.

23 Chinellato, A. C., Vidotti, S. E., Moraes, M. B., & Pessan, L. A. (2007). Effects of plasma etching on surface modification and gas permeability of bisphenol-a polycarbonate films. Journal of Macromolecular Science, Part B: Physics, 46(6), 1165-1177. http://dx.doi.org/10.1080/00222340701582928.

24 Qipeng, G., editor (2016). Polymer morpohology. principles, characterization, and processing. New Jersey: John Wiley & Sons Inc.

25 Baker, R. W., (1991). Membrane separation systems: recent developments and future directions. Michigan: Noyes Data Corporation.
 

5b7c56750e8825497a896e52 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections