Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.2460
Polímeros: Ciência e Tecnologia
Original Article

Modification of thermal and rheological behavior of asphalt binder by the addition of an ethylene-methyl acrylate-glycidyl methacrylate terpolymer and polyphosphoric acid

Pereira, Gerson da Silva; Morales, Ana Rita

Downloads: 0
Views: 1063

Abstract

This study evaluated the modification effects of adding ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EMGMA) in the presence of polyphosphoric acid (PPA) to an asphalt binder graded as 50/70 (0.1mm) in the Brazilian penetration grade specification (AC 50/70). The EMGMA terpolymer has been presented as a new alternative to modify asphalt binders properties, as scientific literature is scarce on its usage in this context and also on the role of PPA when used in combination with reactive polymers. The characteristics of the modified binder were analyzed by standard and rheological testing, including Multiple Stress Creep Recovery test (MSCR) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The MSCR test showed that the modified binder presented lower values of non-recoverable compliances (Jnr) and a higher percent recovery, when compared to the conventional binder. This behavior indicates that addition of EMGMA and PPA in asphalt binders could enhance the resistance to rutting of asphalt mixtures. The statistical evaluation showed that EMGMA had greater influence on the studied properties of Jnr (0.1kPa), MSCR recovery, softening point and elastic recovery at 25°C and that the PPA had also significant influence on these properties. FTIR analysis showed that chemical reactions occurred between the asphalt binder and EMGMA, forming a three-dimensional polymeric network, which promotes improved characteristics.

Keywords

asphalt binder, modified asphalt binders, MSCR, non-recoverable compliance, ethylene-methyl acrylate-glycidyl methacrylate terpolymer.

References

1. Yildirim, Y. (2005). Polymer modified asphalt binders. Construction & Building Materials, 21(1), 66-72. http://dx.doi.org/10.1016/j.conbuildmat.2005.07.007.

2. Bernucci, L. B., Ceratti, J. A. P., Soares, J. B., & Motta, L. M. G. (2008). Pavimentação Asfáltica: formação básica para engenheiros. Rio de Janeiro: Abeda.

3. Polacco, G., Stastna, J., Biondi, D., Antonelli, F., Vlachovicova, Z., & Zanzotto, L. (2004). Rheology of asphalts modified with glycidylmethacrylate functionalizes polymers. Journal of Colloid and Interface Science, 280(2), 366-373. PMid:15533409. http://dx.doi.org/10.1016/j.jcis.2004.08.043.

4. Topal, A. (2009). Evaluation of the properties and microstructure of plastomeric polymer modified bitumen. Fuel Processing Technology, 91(1), 45-51. http://dx.doi.org/10.1016/j.fuproc.2009.08.007.

5. Domingos, M. D. I., & Faxina, A. L. (2015). Rheological analysis of asphalt binders modified with Elvaloy® terpolymer and polyphosphoric acid on the multiple stress creep and recovery test. Materials and Structures, 48(5), 1405-1416. http://dx.doi.org/10.1617/s11527-013-0242-y.

6. Tomé, L. G. A., Soares, J. B., & Lima, C. S. (2004). Estudo do cimento asfáltico de petróleo modificado pelo terpolímero de etilieno-butilacrilato-glicidilmetacrilato. In Anais do 3° Congresso Brasileiro de P&D em Petróleo e Gás (p. 1-6). Rio de Janeiro: Instituto Brasileiro de Petróleo e Gás - IBP. Retrived in 2015, April 3, from http://www.portalabpg.org.br/PDPetro/3/trabalhos/IBP0499_05.pdf

7. DuPont. DuPontTM Elvaloy® Ret Lab Screening Guide: Technical Bulletin RET 1.1: Suggested Guidelines for Initial Screening of Elvaloy® RET in Asphalt for Paving Applications. Delaware: DuPont, 2015. Retrived in 2015, March 28, from http://www.dupont.com/content/dam/dupont/products-and-services/additives-and-modifiers/additives-and-modifiers-landing/documents/ret-asphalt-for_paving-lab-screening_guide.pdf

8. Van der Werff, J. C., & Nguyen, S. M. (1996). US Patent No 5.519.073A. Washington: U.S. Patent and Trademark Office.

9. Kodrat, I., Sohn, D., & Hesp, S. (2007). Comparison of polyphosphoric acid-modified binders with straight and polymer-modified materials. Transportation Research Record, 1998, 47-55. http://dx.doi.org/10.3141/1998-06.

10. Murgich, J., Rodriguez, J., & Aray, Y. (1996). Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins. Energy & Fuels, 10(1), 68-76. http://dx.doi.org/10.1021/ef950112p.

11. Brito, G. F., Agrawal, P., Araújo, E. M., & Melo, T. J. A. (2012). Tenacificação do Poli(Ácido Lático) pela Adição do Terpolímero (Etileno/Acrilato de Metila/Metacrilato de Glicidila). Polímeros: Ciência e Tecnologia, 22(2), 164-169. http://dx.doi.org/10.1590/S0104-14282012005000025.

12. Pamplona, T. F., Nuñez, J. Y. M., & Faxina, A. L. (2014). Desenvolvimentos recentes em ensaios de fadiga em ligantes asfálticos. Revista Transportes, 22(3), 12-25. http://dx.doi.org/10.14295/transportes.v22i3.682.

13. Pamplona, T. F., Sobreiro, F. P., Faxina, A. L., & Fabbri, G. T. P. (2012). Propriedades reológicas sob altas temperaturas de ligantes asfálticos de diferentes fontes modificados com ácido polifosfórico. Revista Transportes, 20(4), 5-11. http://dx.doi.org/10.4237/transportes.v20i4.612.

14. Orange, G., Dupuis, D., Martin, J. V., Farcas, F., Such, C., & Marcant, B. (2004). Chemical modification of bitumen through polyphosphoric acid: properties- microstructure relationship. In Proceedings of the 3rd Eurasphalt & Eurobitume Congress (p. 733-745). The Netherlands: Foundation Eurasphalt. Retrived in 2015, April 12, from http://worldcat.org/isbn/9080288446

15. Baumgardner, G. L., Masson, J. F., Hardee, J. R., Menapace, A. M., & Williams, A. G. (2005). Polyphosphoric acid modified asphalt: proposed mechanisms. Journal of the Association of Asphalt Paving Technologists, 74, 283-306.

16. Masson, J. F. (2008). Brief review of the Chemistry of Polyphosphoric Acid (PPA) and Bitumen. Energy & Fuels, 22(4), 2637-2640. http://dx.doi.org/10.1021/ef800120x.

17. Neto, B., Scarminio, I. S., & Bruns, R. E. (2007). Como fazer experimentos: pesquisa e desenvolvimento na ciência e na indústria. Campinas: Editora Unicamp.

18. American Society for Testing and Materials – ASTM. (2006). ASTM D5-06: Standard Test Method for Penetration of Bituminous Materials. West Conshohocken: ASTM.

19. American Society for Testing and Materials – ASTM. (2006). ASTM D36-06: Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). West Conshohocken: ASTM.

20. American Society for Testing and Materials – ASTM. (2013). ASTM D6084/D6084M – 13: Standard Test Method for Elastic Recovery of Bituminous Materials by Ductilometer. West Conshohocken: ASTM.

21. American Society for Testing and Materials – ASTM. (2006). ASTM D4402-06: Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. West Conshohocken: ASTM.

22. American Society for Testing and Materials – ASTM. (2008). ASTM D7175-08: Standard test method for determining dynamical shear rheometer (DSR). West Conshohocken: ASTM.

23. Transportation Research Board (2010). Development of the SHRP Binder Specification (Transportation Research Circular E-C147). Washington: Transportation Research Board. Retrived in 2015, March 15, from http://onlinepubs.trb.org/onlinepubs/circulars/ec147.pdf

24. Bouldin, M. G., Dongré, R., & D’Angelo, J. (2001). Proposed refinement of Superpave high-temperature specification parameter for performance-graded binders. Transportation Research Record, 1766, 40-47. http://dx.doi.org/10.3141/1766-06.

25. D'Angelo, J. (2015). Multi-stress creep and recovery test method a new specification. Austin: Association of Modified Asphalt Producers - AMAP. Retrived in 2015, March 15, from http://amap.ctcandassociates.com/wp/wp-content/uploads/dangelo-MSCR-2-08E.pdf

26. American Society for Testing and Materials – ASTM. (2010). ASTM D7405-10: Standard Test Method for Multiple Stress Creep and Recovery of Asphalt Binder Using a Dynamic Shear Rheometer. West Conshohocken: ASTM.

27. Hafeez, I., & Kamal, M. A. (2014). Creep compliance: a parameter to predict rut performance of asphalt binders and mixtures. Arabian Journal for Science and Engineering, 39(8), 5971-5978. http://dx.doi.org/10.1007/s13369-014-1216-2.

28. Adorjányi, K., & Fuleki, P. (2013). Correlation between permanent deformation-related performance parameters of asphalt concrete mixes and binders. Central European Journal of Engineering, 3, 534-540. http://dx.doi.org/10.1007/s13369-014-1216-2.

29. Resolução ANP nº 32, de 21.9.2010. (2010, 22 de setembro). Diário Oficial da República Federativa do Brasil, Brasília.

30. Bahia, H. U., & Anderson, D. A. (1995). Strategic highway research program binder rheological parameters: background and comparison with conventional properties. Transportation Research Record, 1488, 32-39.

31. Kaci, M., Kaid, N., & Boukerrou, A. (2011). Influence of ethylene-butyl acrylate-glycidyl methacrylate terpolymer on compatibility of ethylene vinyl acetate copolymer/olive husk flour composites. Composite Interfaces, 18(4), 295-307. http://dx.doi.org/10.1163/092764411X584487.

32. Jun, L., Yuxia, Z., Yuzhen, Z. (2008). The research of GMA-g-LDPE modified Qinhuangdao bitumen. Construction and Building Materials, 22, 1067-1073. http://dx.doi.org/10.1016/j.conbuildmat.2007.03.007.
 

5b7c1cac0e88256a22896e54 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections