Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.2375
Polímeros: Ciência e Tecnologia
Original Article

New technologies from the bioworld: selection of biopolymer-producing microalgae

Martins, Roberta Guimarães; Gonçalves, Igor Severo; Morais, Michele Greque de; Costa, Jorge Alberto Vieira

Downloads: 0
Views: 1092

Abstract

Microalgae are studied because of their biotechnological potential. The growth of microalgae aims at obtaining natural compounds. Due to the large amount of accumulated polymer waste, one of the solutions is the use of biodegradable polymers. The objective of this work was to select biopolymer-producing microalgae and to study the cell growth phase in which maximum production occurs. Microalgae Cyanobium sp., Nostoc ellipsosporum, Spirulina sp. LEB 18 and Synechococcus nidulans were studied. The growth was carried out in closed 2 L photobioreactors kept in a chamber thermostated at 30 °C with an illuminance of 41.6 μmolphotons.m-2.s-1 and a 12 h light/dark photoperiod. The biopolymers were extracted at times of 5, 10, 15, 20 and 25 d. The microalgae that had the highest yields were Nostoc ellipsosporum and Spirulina sp. LEB 18 with crude biopolymer efficiency of 19.27 and 20.62% in 10 and 15 d, respectively, at the maximum cell growth phase.

Keywords

cyanobacteria, biopolymer, polyhydroxyalkanoate, productivity.

References

1. Madigan, M. T., Martinko, J. M., Dunlap, P. V., & Clark, D. P. (2010). Microbiologia de Brock. Porto Alegre: Artmed.

2. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 14(1), 217-232. http://dx.doi.org/10.1016/j.rser.2009.07.020.

3. Morais, M. G., Miranda, M. Z., & Costa, J. A. V. (2006). Biscoitos de chocolate enriquecido com Spirulina platensis: características físico-química, sensorial e digestibilidade. Alimentos e Nutrição, 17(3), 333-340.

4. Silva, M. J., Figueiredo, B. R. S., Ramos, R. T. C., & Medeiros, E. S. F. (2010). Food resources used by three species of fish in the semi-arid region of Brazil. Neotropical Ichthyology, 8(4), 825-833. http://dx.doi.org/10.1590/S1679-62252010005000010.

5. Córdoba, L. T., Bocanegra, A. R. D., Llorente, B. R., Hernández, E. S., Echegoyen, F. B., Borja, R., Bejines, F. R., & Morcillo, M. F. C. (2008). Batch culture growth of Chlorella zofingiensis on effluent derived from two-stage anaerobic digestion of two-phase olive mill solid waste. Journal of Biotechnology, 11(2), 1-8. http://dx.doi.org/10.2225/vol11-issue2-fulltext-1.

6. Morais, M. G., & Costa, J. A. V. (2008). Bioprocessos para remoção de dióxido de carbono e óxido de nitrogênio por microalgas visando a utilização de gases gerados durante a combustão do carvão. Química Nova, 31(5), 1038-1042. http://dx.doi.org/10.1590/S0100-40422008000500017.

7. Radmann, E. M., Camerini, F. V., Santos, T. D., & Costa, J. A. V. (2011). Isolation and application of SOx and NOx resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energy Conversion and Management, 52(10), 3132-3136. http://dx.doi.org/10.1016/j.enconman.2011.04.021.

8. Colla, L. M., Muccillo-Baisch, A. L., & Costa, J. A. V. (2008). Spirulina platensis effects on the levels of total cholesterol, HDL and triacylglycerol in rabbits fed with a hypercholesterolemic diet. Brazilian Archives of Biology and Technology, 51(2), 405-411. http://dx.doi.org/10.1590/S1516-89132008000200022.

9. Oltra, C. (2011). Stakeholder perceptions of biofuels from microalgae. Energy Policy, 39(3), 1774-1781. http://dx.doi.org/10.1016/j.enpol.2011.01.009.

10. Martins, R. G., Gonçalves, I. S., Morais, M. G., & Costa, J. A. V. (2014). Bioprocess engineering process aspects of biopolymer production by the cyanobacterium Spirulina strain LEB 18. International Journal of Polymer Science, 2014, 1-6. http://dx.doi.org/10.1155/2014/895237.

11. Goo, B. G., Baek, G., Choi, D. J., Park, Y. I., Synytsya, A., Bleha, R., Seong, D. H., Lee, C. G., & Park, J. K. (2013). Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertolecta. Bioresource Technology, 129, 343-350. PMid:23262010. http://dx.doi.org/10.1016/j.biortech.2012.11.077.

12. Samantaray, S., & Mallick, N. (2012). Production and characterization of poly-β-hidroxybutyrate (PHB) polymer from Aulosira fertilissima. Journal of Applied Phycology, 24(4), 803-814. http://dx.doi.org/10.1007/s10811-011-9699-7.

13. Bhati, R., & Mallick, N. (2012). Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. Journal of Chemical Technology and Biotechnology, 87(4), 505-512. http://dx.doi.org/10.1002/jctb.2737.

14. Shrivastav, A., Mishra, S. K., & Mishra, S. (2010). Polyhydroxyalkanoates (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. International Journal of Biological Macromolecules, 46(2), 255-260. PMid:20060853. http://dx.doi.org/10.1016/j.ijbiomac.2010.01.001.

15. Panda, B., Jain, P., Sharma, L., & Mallick, N. (2006). Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresource Technology, 97(11), 1296-1301. PMid:16046119. http://dx.doi.org/10.1016/j.biortech.2005.05.013.

16. Jau, M.-H., Yew, S.-P., Toh, P. S. Y., Chong, A. S. C., Chu, W.-L., Phang, S.-M., Najimudin, N., & Sudesh, K. (2005). Biosynthesis and mobilization of poly(3-hydroxybutyrate) [P(3HB)] by Spirulina platensis. International Journal of Biological Macromolecules, 36(3), 144-151. PMid:16005060. http://dx.doi.org/10.1016/j.ijbiomac.2005.05.002.

17. Nishioka, M., Nakai, K., Miyake, M., Asada, Y., & Taya, M. (2001). Production of poly-β-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited conditions. Biotechnology Letters, 23(14), 1095-1099. http://dx.doi.org/10.1023/A:1010551614648.

18. Mohammadi, M., Hassan, M. A., Phang, L.-Y., Shirai, Y., Man, H. C., & Ariffin, H. (2012). Intracellular polyhydroxyalkanoates recovery by cleaner halogen-free methods towards zero emission in the palm oil mill. Journal of Cleaner Production, 37, 353-360. http://dx.doi.org/10.1016/j.jclepro.2012.07.038.

19. Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2014). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 39(3-4), 397-442. http://dx.doi.org/10.1016/j.progpolymsci.2013.06.008.

20. Chanprateep, S. (2010). Current trends in biodegradable polyhydroxyalkanoates. Journal of Bioscience and Bioengineering, 110(6), 621-632. PMid:20719562. http://dx.doi.org/10.1016/j.jbiosc.2010.07.014.

21. Satyanarayana, A. B., Mariano, A. B., & Vargas, J. V. C. (2011). A review on microalgae, a versatile source for sustainable energy and materials. International Journal of Energy Research, 35(4), 291-311. http://dx.doi.org/10.1002/er.1695.

22. Nonhebel, S. (2005). Renewable energy and food supply: will there be enough land? Renewable & Sustainable Energy Reviews, 9(2), 191-201. http://dx.doi.org/10.1016/j.rser.2004.02.003.

23. Henrard, A. A., Morais, M. G., & Costa, J. A. V. (2011). Vertical tubular photobioreactor for semicontinuous culture of Cyanobium sp. Bioresource Technology, 102(7), 4897-4900. PMid:21295968. http://dx.doi.org/10.1016/j.biortech.2010.12.011.

24. Morais, M. G., Reichert, C. C., Dalcanton, F., Durante, A. J., Marins, L. F., & Costa, J. A. V. (2008). Isolation and characterization of a new Arthrospira strain. Zeitschrift für Naturforschung, 63(1-2), 144-150. PMid:18386504.

25. Rippka, R., Deruelles, J., Waterburry, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1-61. http://dx.doi.org/10.1099/00221287-111-1-1.

26. Zarrouk, C. (1966). Contribution à l'étude d'une cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima Geitler (Ph.D. Thesis). University of Paris, France.

27. Costa, J. A. V., de Morais, M. G., Dalcanton, F., Reichert, C. C., & Durante, A. J. (2006). Simultaneous cultivation of Spirulina platensis and the toxigenic, cyanobacteria Microcystis aeruginosa. Zeitschrift für Naturforschung, 61(1-2), 105-110. PMid:16610226.

28. Association of Official Analytical Chemists – AOAC. (2000). Official methods of analysis of the Association of Official Analytical Chemists. 17th ed. In W. Horwitz (Ed.), Maryland: Association of Official Analytical Chemists.

29. Sharma, L., & Mallick, N. (2005). Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: regulation pH, light-dark cycles, N and P status abd carbon sources. Bioresource Technology, 96(11), 1304-1310. PMid:15734319. http://dx.doi.org/10.1016/j.biortech.2004.10.009.

30. Jiang, L., Luo, S., Fan, X., Yang, Z., & Guo, R. (2011). Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Applied Energy, 88(10), 3336-3341. http://dx.doi.org/10.1016/j.apenergy.2011.03.043.

31. Wu, G. F., Wu, Q. Y., & Shen, Z. Y. (2001). Accumulation of poly-β-hydroxybutyrate in cyanobacterium Synechocystis sp. PCC6803. Bioresource Technology, 76(2), 85-90. PMid:11131804. http://dx.doi.org/10.1016/S0960-8524(00)00099-7.

32. Sankhla, I. S., Bhati, R., Singh, A. K., & Mallick, N. (2010). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production from a local isolate, Brevibacillus invocatus MTCC 9039. Bioresource Technology, 101(6), 1947-1953. PMid:19900805. http://dx.doi.org/10.1016/j.biortech.2009.10.006.

33. Mallick, N., Gupta, S., Panda, B., & Sen, R. (2007). Process optimization for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production by Nostoc muscorum. Biochemical Engineering Journal, 37(2), 125-130. http://dx.doi.org/10.1016/j.bej.2007.04.002.

34. Fradinho, J. C., Domingos, J. M. B., Carvalho, G., Oehmen, A., & Reis, M. A. M. (2013). Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresource Technology, 132, 146-153. PMid:23399498. http://dx.doi.org/10.1016/j.biortech.2013.01.050.

5b7c16530e8825c20a896e59 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections