Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220075
Polímeros: Ciência e Tecnologia
Original Article

Conductive Amazon açaí/polyaniline composite fiber: fabrication and properties

Jefter Victor Gonçalves; Jefferson Suela; Marcus Vinícius Duarte Silva; Rodrigo Fernando Bianchi; Cleidinéia Cavalcante da Costa

Downloads: 0
Views: 194

Abstract

This paper investigates the properties of the polyaniline (PANI) on açaí vegetable fiber (AVF), hereafter referred to as PANI-COATED:AVF. Scanning electron and atomic force microscopy showed that the incorporation of PANI produced a linear surface, while optical microscopy images showed that the semiconductor layer was flawed. The complex impedance measurements performed at room temperature indicated that the electrical properties of PANI were fully transferred to the PANI-COATED:AVF and that the Cole-Cole approach dominated over a frequency range from 1 Hz to 100 kHz. Thermogravimetric analysis revealed a thermal stability range of 0° to 300°C. Finally, the combination of PANI with AVF was a successful due to the ease of processing and obtaining semiconductor filaments with wide ranges of thermal and electrical stability. This article is a complement to another recently published [doi.org/10.1002/pc.27068].

Keywords

natural polymer, semiconducting polymer, environmental conservation

References

1 Cavalcante, P. B. (1991). Frutas comestíveis da Amazônia. Belém: CNPq/Museu Paraense Emílio Goeldi.

2 Nogueira, O. L., Figueirêdo, F. J. C., & Müller, A. A. (Eds.). (2005). Sistema de produção – açaí. Belém: Embrapa Amazônia Oriental.

3 Muñiz-Miret, N., Vamos, R., Hiraoka, M., Montagnini, F., & Mendelsohn, R. O. (1996). The economic value of managing the acai palm (Euterpe oleracea mart.) in the floodplains of the Amazon estuary, Para, Brazil. Forest Ecology and Management, 87(1-3), 163-173. http://dx.doi.org/10.1016/S0378-1127(96)03825-X.

4 Yamaguchi, K. K. L., Pereira, L. F. R., Lamarão, C. V., Lima, E. S., & Veiga-Junior, V. F. (2015). Amazon acai: chemistry and biological activities: a review. Food Chemistry, 179, 137-151. http://dx.doi.org/10.1016/j.foodchem.2015.01.055. PMid:25722148.

5 Santos, N. S., Silva, M. R., & Alves, J. L. (2017). Reinforcement of a biopolymer matrix by lignocellulosic agro-waste. Procedia Engineering, 200, 422-427. http://dx.doi.org/10.1016/j.proeng.2017.07.059.

6 Bufalino, L., Guimarães, A. A., Silva, B. M. S., Souza, R. L. F., Melo, I. C. N. A., Oliveira, D. N. P. S., & Trugilho, P. F. (2018). Local variability of yield and physical properties of açaí waste and improvement of its energetic attributes by separation of lignocellulosic fibers and seeds. Journal of Renewable and Sustainable Energy, 10(5), 053102. http://dx.doi.org/10.1063/1.5027232.

7 Poletto, M., Ornaghi, H. L. Jr., & Zattera, A. J. (2014). Native cellulose: structure, characterization and thermal properties. Materials, 7(9), 6105-6119. http://dx.doi.org/10.3390/ma7096105. PMid:28788179.

8 Razak, S. I. A., Rahman, W. A. W. A., Sharif, N. F. A., & Yahya, M. Y. (2012). Simultaneous numerical optimization of the mechanical and electrical properties of polyaniline coated kenaf fiber using response surface methodology: nanostructured polyaniline on natural fiber. Composite Interfaces, 19(7), 411-424. http://dx.doi.org/10.1080/15685543.2012.757957.

9 Silva, C. K., Mastrantonio, D. J. S., Costa, J. A. V., & Morais, M. G. (2019). Innovative pH sensors developed from ultrafine fibers containing açaí (Euterpe oleracea). Food Chemistry, 294, 397-404. http://dx.doi.org/10.1016/j.foodchem.2019.05.059. PMid:31126480.

10 Castro, C. D. P. C., Dias, C. G. B. T., & Faria, J. A. F. (2010). Production and evaluation of recycled polymers from açaí fibers. Materials Research, 13(2), 159-163. http://dx.doi.org/10.1590/S1516-14392010000200007.

11 Tavares, F. F. C., Almeida, M. D. C., Silva, J. A. P., Araújo, L. L., Cardozo, N. S. M., & Santana, R. M. C. (2020). Thermal treatment of açaí (Euterpe oleracea) fiber for composite reinforcement. Polímeros: Ciência e Tecnologia, 30(1), e2020003. http://dx.doi.org/10.1590/0104-1428.09819.

12 Araujo, J. R., Adamo, C. B., & De Paoli, M.-A. (2011). Conductive composites of polyamide-6 with polyaniline coated vegetal fiber. Chemical Engineering Journal, 174(1), 425-431. http://dx.doi.org/10.1016/j.cej.2011.08.050.

13 Souza, F. G. Jr., Paiva, L. O., Michel, R. C., & Oliveira, G. E. (2011). Modificação da fibra de coco com polianilina e o seu uso como sensor de pressão. Polímeros: Ciência e Tecnologia, 21(1), 39-46. http://dx.doi.org/10.1590/S0104-14282011005000016.

14 Souza, F. G. Jr., Picciani, P. H. S., Rocha, E. V., & Oliveira, G. E. (2010). Estudo das propriedades mecânicas e elétricas de fibras de curauá modificada com polianilina. Polímeros: Ciência e Tecnologia, 20(5), 377-382. http://dx.doi.org/10.1590/S0104-14282010005000058.

15 Macdiarmid, A. G., Chiang, J. C., Richter, A. F., & Epstein, A. J. (1987). Polyaniline: a new concept in conducting polymers. Synthetic Metals, 18(1-3), 285-290. http://dx.doi.org/10.1016/0379-6779(87)90893-9.

16 Costa, C. C., Mapa, L. M., Kelmer, A. C., Ferreira, S. O., & Bianchi, R. F. (2022). New insight into natural fiber-reinforced polymer composites as pressure sensors: experiment, theory, and application. Polymer Composites, 43(12), 8869-8876. http://dx.doi.org/10.1002/pc.27068.

17 Costa, C. C. (2019). Efeitos da pressão mecânica nas propriedades elétricas ac em compósitos elastoméricos a base de fibras naturais recobertas com polímero condutor (Doctoral thesis). Universidade Federal de Viçosa, Viçosa.

18 Cantalice, J. D. A., Mazzini, E. G. Jr., Freitas, J. D., Silva, R. C., Faez, R., Costa, L. M. M., & Ribeiro, A. S. (2021). Polyaniline-based electrospun polycaprolactone nanofibers: preparation and characterization. Polímeros: Ciência e Tecnologia, 31(1), e2021002. http://dx.doi.org/10.1590/0104-1428.09320.

19 Schauss, A. G., Wu, X., Prior, R. L., Ou, B., Patel, D., Huang, D., & Kababick, J. P. (2006). Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (Acai). Journal of Agricultural and Food Chemistry, 54(22), 8598-8603. http://dx.doi.org/10.1021/jf060976g. PMid:17061839.

20 Martins, M. A., Pessoa, J. D. C., Gonçalves, P. S., Souza, F. I., & Mattoso, L. H. C. (2008). Thermal and mechanical properties of the açaí fiber/natural rubber composites. Journal of Materials Science, 43(19), 6531-6538. http://dx.doi.org/10.1007/s10853-008-2842-4.

21 Kumari, A., Singh, I., & Dixit, S. K. (2014). Effect of annealing on graphene incorporated poly-(3-hexylthiophene): CuInS2 photovoltaic device. AIP Conference Proceedings, 1620(1), 35-40. http://dx.doi.org/10.1063/1.4898216.

22 Epstein, A. J., Ginder, J. M., Zuo, F., Bigelow, R. W., Woo, H.-S., Tanner, D. B., Richter, A. F., Huang, W.-S., & MacDiarmid, A. G. (1987). Insulator-to-metal transition in polyaniline. Synthetic Metals, 18(1-3), 303-309. http://dx.doi.org/10.1016/0379-6779(87)90896-4.

23 Zhou, W., Zhu, D., Langdon, A., Li, L., Liao, S., & Tan, L. (2009). The structure characterization of cellulose xanthogenate derived from the straw of Eichhornia crassipes. Bioresource Technology, 100(21), 5366-5369. http://dx.doi.org/10.1016/j.biortech.2009.05.066. PMid:19540749.

24 Mostafaei, A., & Zolriasatein, A. (2012). Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Progress in Natural Science: Materials International, 22(4), 273-280. http://dx.doi.org/10.1016/j.pnsc.2012.07.002.

25 Santos, M. C., Bianchi, A. G. C., Ushizima, D. M., Pavinatto, F. J., & Bianchi, R. F. (2017). Ammonia gas sensor based on the frequency-dependent impedance characteristics of ultrathin polyaniline films. Sensors and Actuators A: Physical, 253, 156-164. http://dx.doi.org/10.1016/j.sna.2016.08.005.

26 Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9(4), 341-351. http://dx.doi.org/10.1063/1.1750906.

27 Macdonald, J. R. (1999). Dispersed electrical-relaxation response: discrimination between conductive and dielectric relaxation processes. Brazilian Journal of Physics, 29(2), 332-346. http://dx.doi.org/10.1590/S0103-97331999000200014.

28 Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20(3), 289-305. http://dx.doi.org/10.1007/BF02368532. PMid:1443825.

29 Barsoukov, E., & Macdonald, J. R. (Eds.). (2005). Impedance spectroscopy theory, experiment, and applications. Hoboken: John Wiley & Sons, Inc. http://dx.doi.org/10.1002/0471716243.

30 Gonçalves, G., Pimentel, A., Fortunato, E., Martins, R., Queiroz, E. L., Bianchi, R. F., & Faria, R. M. (2006). UV and ozone influence on the conductivity of ZnO thin films. Journal of Non-Crystalline Solids, 352(9-20), 1444-1447. http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.021.
 

65ce01b8a953953c86781933 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections