Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.02416
Polímeros: Ciência e Tecnologia
Original Article

Use of chitosan in the remediation of water from purification of biodiesel

Stroparo, Erivelton César; Mollinari, Krissina Camilla; Souza, Kely Viviane de

Downloads: 0
Views: 901

Abstract

Abstract: This article evaluates the efficiency of the degradation of pollutants present in water from the purification of biodiesel, characterized by high content of chemical oxygen demand (COD), suspended solids (SS), oils and greases, methanol, soap, and glycerol. The treatment process proposed was of the photo-Fenton type using iron immobilized in chitosan. The characterization of the material was performed according to degree of deacetylation (DD) and thermal stability (TG). The results revealed a DD of 66.5% and that the material undergoes decomposition in three temperature stages: 100; 150-350 and above 350 °C. The evaluated parameters were: COD, suspended solids, oils and greases, color and turbidity. After a 180-minutes long treatment, the removal percentage was 94.52, 70, 55, and 60% respectively. These results indicate that the photo-Fenton process can be an alternative for pre-treatment this type of effluent.

Keywords

biofuel; photo-degradation; transesterification; wastewater

References

Okoye, P. U., & Hameed, B. H. (2015). Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. Renewable & Sustainable Energy Reviews53, 558-574. http://dx.doi.org/10.1016/j.rser.2015.08.064. 

Daud, N. M., Sheikh Abdullah, S. R., Abu Hasan, H., & Yaakob, Z. (2015). Production of biodiesel and its wastewater treatment technologies: a review. Process Safety and Environmental Protection94, 487-508. http://dx.doi.org/10.1016/j.psep.2014.10.009. 

Veljković, V. B., Stamenković, O. S., & Tasić, M. B. (2014). Thewastewater treatment in the biodiesel production withalkali-catalyzed transesterification. Renewable & Sustainable Energy Reviews32, 40-60. http://dx.doi.org/10.1016/j.rser.2014.01.007. 

Pitakpoolsil, W., & Hunsom, M. (2013). Adsorption of pollutants frombiodiesel wastewater using chitosan flakes. Journal of the Taiwan Institute of Chemical Engineers , 44(6), 963-971. http://dx.doi.org/10.1016/j.jtice.2013.02.009. 

Gao, Y., Wang, Y., & Zhang, H. (2015). Removal of Rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation. Applied Catalysis B: Environmental178, 29-36. http://dx.doi.org/10.1016/j.apcatb.2014.11.005. 

Li, H., Li, Y., Xiang, L., Huang, Q., Qiu, J., Zhang, H., Sivaiah, M. V., Baron, F., Barrault, J., Petit, S., & Valange, S. (2015). Heterogeneous photo-Fenton decoloration of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation. Journal of Hazardous Materials287, 32-41. http://dx.doi.org/10.1016/j.jhazmat.2015.01.023. PMid:25621831. 

Barndõk, H., Blanco, L., Hermosilla, D., & Blanco, A. (2016). Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1,4-dioxane. Chemical Engineering Journal284, 112-121. http://dx.doi.org/10.1016/j.cej.2015.08.097. 

Souza, K. V., Zamora, P. G. P., & Zawadzki, S. F. (2010). Esferas de quitosana/Fe na degradação do corante Azul QR-19 por processos foto-Fenton utilizando luz artificial ou solar. Polímeros: Ciência e Tecnologia20(3), 210-214. http://dx.doi.org/10.1590/S0104-14282010005000035. 

Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard methods for the examination of water and wastewater, 22nd ed. Washington: American Public Health Association, American Water Works Association, Water Environment Federation. 

Oliveira, M. C., Nogueira, R. F. P., Gomes, J. A., No., Jardim, W. F. (2001). Sistema de injeção em fluxo espectrofotométrico para monitorar peróxido de hidrogênio em processo de fotodegradação por reação foto-Fenton. Química Nova24(2), 188-190. http://dx.doi.org/10.1590/S0100-40422001000200007. 

Wang, C., Yuan, F., Pan, J., Jiao, S., Jin, L., & Cai, H. (2014). A novel method for the determination of degree of deacetylation of chitosan by coulometric titration. International Journal of Biological Macromolecules70, 306-311. http://dx.doi.org/10.1016/j.ijbiomac.2014.07.007. PMid:25020083. 

Tan, S. C., Khor, E., Tan, T. K., & Wong, S. M. (1998). The degree of deacetylation of chitosan: advocating the first derivate UV- spectrophotometry meted of determination. Talanta , 45(4), 713-719. http://dx.doi.org/10.1016/S0039-9140(97)00288-9. PMid:18967053. 

Torres, M. A., Vieira, R. S., Beppu, M. M., & Santana, C. C. (2005). Produção e caracterização de microesferas de quitosana modificadas quimicamente. Polímeros: Ciência e Tecnologia15(4), 306-312. http://dx.doi.org/10.1590/S0104-14282005000400016. 

Duarte, M. L., Ferreira, M. C., Marvão, M. R., & Rocha, J. (2001). Determination of the degree of acetylation of chitin materials by 13C CP/MAS NMR spectroscopy. International Journal of Biological Macromolecules28(5), 359-363. http://dx.doi.org/10.1016/S0141-8130(01)00134-9. PMid:11325422. 

Lavertu, M., Xia, Z., Serreqi, N. A., Berrada, M., Rodrigues, A., Wang, D., Buschmann, M. D., & Gupta, A. (2003). A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis32(6), 1149-1158. http://dx.doi.org/10.1016/S0731-7085(03)00155-9. PMid:12907258. 

Jiang, X., Chen, L., & Zhong, W. (2003). A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydrate Polymers , 54(4), 457-463. http://dx.doi.org/10.1016/j.carbpol.2003.05.004. 

Jiang, D. S., Long, S. Y., Huang, J., Xiao, H. Y., & Zhou, J. Y. (2005). Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochemical Engineering Journal25(1), 15-23. http://dx.doi.org/10.1016/j.bej.2005.03.007. 

Yang, Y. M., Wang, J. W., & Tan, R. X. (2004). Immobilization of glucose oxidase on chitosan-SiO 2 gel. Enzyme and Microbial Technology34(2), 126-131. http://dx.doi.org/10.1016/j.enzmictec.2003.09.007. 

Lin, H., Wang, H., Xue, C., & Ye, M. (2002). Preparation of chitosan oligomers by immobilized papain. Enzyme and Microbial Technology31(5), 588-592. http://dx.doi.org/10.1016/S0141-0229(02)00138-2. 

Brito, J. F., Ferreira, L. O., Silva, J. P., & Ramalho, T. C. (2012). Tratamento da água de purificação do biodiesel utilizando eletrofloculação. Quimica Nova35(4), 728-732. http://dx.doi.org/10.1590/S0100-40422012000400014. 

Jaruwat, P., Kongjao, S., & Hunsom, M. (2010). Management of biodiesel wastewater by the combined processes of chemical recovery and electrochemical treatment. Energy Conversion and Management51(3), 531-537. http://dx.doi.org/10.1016/j.enconman.2009.10.018.

Siles, J. A., Martin, M. A., Chica, A. F., & Martin, A. (2010). Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Bioresource Technology101(16), 6315-6321. http://dx.doi.org/10.1016/j.biortech.2010.03.042. PMid:20363620. 

Grangeiro, R. V. T., Melo, M. A. R., Silva, E. V., Souza, A. G., & Toscano, I. A. S. (2014). Caracterização física, química e toxicológica da água de lavagem gerada na produção de biodiesel. Revista Verde de Agroecologia e Desenvolvimento Sustentável9(1), 78-83. Retrieved in 2016, February 22, from https://www.gvaa.com.br/revista/index.php/RVADS/article/view/2632.

Sperling, M. V. (2014). Introdução à qualidade das águas e ao tratamento de esgotos. Belo Horizonte: Editora UFMG. [

Ramírez, X. M. V., Mejía, G. M. H., López, K. V. P., Vásquez, G. R., & Sepúlveda, J. M. M. (2012). Wastewater treatment from biodieselproduction via a coupled photo-Fenton – aerobic sequentialbatch reactor (SBR) system. Water Science and Technology66(4), 824-830. http://dx.doi.org/10.2166/wst.2012.250. PMid:22766873. 

5c55a0540e88257574b25bb2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections