Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.00516
Polímeros: Ciência e Tecnologia
Original Article

Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite

Palanivel, Anand; Veerabathiran, Anbumalar; Duruvasalu, Rajesh; Iyyanar, Saranraj; Velumayil, Ramesh

Downloads: 3
Views: 1222

Abstract

The Dynamic mechanical behavior of chemically treated and untreated hemp fiber reinforced composites was investigated. The morphology of the composites was studied to understand the interaction between the filler and polymer. A series of dynamic mechanical tests were performed by varying the fiber loading and test frequencies over a range of testing temperatures. It was found that the storage modulus (E’) recorded above the glass transition temperature (Tg) decrease with increasing temperature. The loss modulus (E”) and damping peaks (Tan δ) values were found to be reduced with increasing matrix loading and temperature. Morphological changes and crystallinity of Composites were investigated using scanning electron microscope (SEM) and XRD techniques. The composites with Alkali and Benzoyl treated fibers has attributed enhanced DMA Results. In case of XRD studies, the composites with treated fibers with higher filler content show enhanced crystallinity.

Keywords

crystallinity, DMA, fiber treatments, hemp fiber, SEM, XRD.

References

1. Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fiber-reinforced polyethylene composites. Polymer, 37(23), 5139-5145. http://dx.doi.org/10.1016/0032-3861(96)00144-9.

2. Varma, I. K., Anantha Krishnan, S. R., & Krishnamoorthy, S. (1989). Comp of glass/modified jute fabric and unsaturated polyester. Composites, 20(4), 383-388. http://dx.doi.org/10.1016/0010-4361(89)90664-2.

3. Geethamma, V. G., Thomas Mathew, K., Lakshminarayanan, R., & Thomas, S. (1998). Composite of short coir fibers and natural rubber: effect of chemical modification, loading and orientation of fiber. Polymer, 39(6-7), 1483-1491. http://dx.doi.org/10.1016/S0032-3861(97)00422-9.

4. Sreekala, M.S., Kumaran, M.G., &Thomas, S. (1997). Oil palm fibers: morphology, chemical composition, surface modification and mechanical properties. Journal of Applied Polymer Science, 66(5). 821-835. http://dx.doi.org/10.1002/(SICI)1097-4628(19971031)66:5<821::AID-APP2>3.0.CO;2-X.

5. Aziz, S. H., & Ansell, M. P. (2004). The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1-polyester resin matrix. Composites Science and Technology, 64(9), 1219-1230. http://dx.doi.org/10.1016/j.compscitech.2003.10.001.

6. Jacob, M., Francis, B., Thomas, S., & Varughese, K. T. (2006). Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polymer Composites, 27(6), 671-680. http://dx.doi.org/10.1002/pc.20250.

7. Pothan, L. A., George, C. N., John, M. J., & Thomas, S. (2010). Dynamic mechanical and dielectric behavior of banana-glass hybrid fiber reinforced polyester composites. Journal of Reinforced Plastics and Composites, 29(8), 1131-1145. http://dx.doi.org/10.1177/0731684409103075.

8. Ornaghi, H. L. Jr, Bolner, A. S., Fiorio, R., Zattera, A. J., & Amico, S. C. (2010). Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. Journal of Applied Polymer Science, 118(2), 887-896. http://dx.doi.org/10.1002/app.32388.

9. Ning, H. (2012). Composites and their applications. Croatia: Intech Open. http://dx.doi.org/10.5772/3353.

10. Sreekumar, P. A. (2008). Matrices for natural-fibre reinforced composites. In K. Pickering (Ed.), Properties and performance of natural-fibre composite. Boca Raton: CRC Press, Taylor & Francis Group.

11. Selvin, T. P., Kuruvilla, J., & Sabu, T. (2004). Mechanical properties of titanium dioxide-filled polystyrene micro composites. Materials Letters, 58(3), 281-289. http://dx.doi.org/10.1016/S0167-577X(03)00470-1.

12. Peijs, T. (2003). Composites for recyclability. Materials Today, 6(4), 30-35. http://dx.doi.org/10.1016/S1369-7021(03)00428-0.

13. Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259-1264. http://dx.doi.org/10.1016/S0266-3538(03)00096-4.

14. Shihong, B., Benlian, Z., Qiyun, Z., & Xianrong, B. (1994). A new kind of super-hybrid composite material for civil use - ramie fibre/Al. Composites, 25(3), 225-228. http://dx.doi.org/10.1016/0010-4361(94)90020-5.

15. Park, J. M., Son, T. Q., Jung, J. G., & Hwang, B. S. (2006). Interfacial evaluation of single ramie and kenaf fiber/epoxy resin composites using micromechanical test and non-destructive acoustic emission. Composite Interfaces, 13(2-3), 105-129. http://dx.doi.org/10.1163/156855406775997051.

16. Nam, S., & Netravali, A. N. (2006). Green composites I –Physical properties of ramie fibers for environment-friendly green composites. Fibers and Polymers, 7(4), 372-379. http://dx.doi.org/10.1007/BF02875769.

17. Nam, S., & Netravali, A. N. (2006). Green composites II - Environment-friendly, biodegradable composites using ramie fibers and soy protein concentrate (SPC) resin. Fibers and Polymers, 7(4), 380-388. http://dx.doi.org/10.1007/BF02875770.

18. Kishi, H., & Fujita, A. (2008). Wood-based epoxy resins and the ramie fiber reinforced composites. Environmental Engineering and Management Journal, 7, 517-523.

19. Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pre-treatments of natural fibers and their application as reinforcing material in polymer composites – a review. Polymer Engineering and Science, 49(7), 1253-1272. http://dx.doi.org/10.1002/pen.21328.

20. Monteiro, S. N., Margem, F. M., Rodriguez, R. J. S., & Souza, D. (2008). Dynamic mechanical behavior of ramie fiber reinforced polyester matrix composites In Proceedings of the 63rd International Congress of the Brazilian Association for Metallurgy and Materials - ABM (pp. 1-10). São Paulo: ABM.

21. Sharma, J., & Bapat, M. N. (2014). Dynamic mechanical behavior and dielectric properties of rice husk filled low density polyethylene composites with/without flyash cenosphere. Nova Journal of Engineering and Applied Sciences, 3(3). 1-18. http://dx.doi.org/10.20286/jeas.v3i3.22.

22. Han, Y. H., Han, S. O., Cho, D., & Kim, H.-I. (2008). Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: the Effect of Fiber Treatment with Electron Beam. Macromolecular Research, 16(3), 253-260. http://dx.doi.org/10.1007/BF03218861.

23. Margem, F. M., Monteiro, S. N., Bravo, J., No., Rodriguez, R. J. S., & Soares, B. G. (2010). The dynamic-mechanical behavior of epoxy matrix composites reinforced with ramie fibers. Revista Matéria, 15(2), 164-171. http://dx.doi.org/10.1590/S1517-70762010000200012.

24. Mehdi, B., Mehdi, T., Ghanbar, E., & Robert, H. F. (2004). Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour – high-density polyethylene composites. IJE Transactions B, Applications, 17(1), 95-104.

25. Flaifel, M. H., Ahmad, S. H., Hassan, A., Bahri, S., Tarawneh, M. A., & Yu, L.-J. (2013). Thermal conductivity and dynamic mechanical analysis of NiZn ferrite nanoparticles filled thermoplastic natural rubber nano composite. Composites. Part B, Engineering, 52, 334-339. http://dx.doi.org/10.1016/j.compositesb.2013.04.021.

26. Jawaid, M., Abdul Khalil, H. P. S., Hassan, A., Dungani, R., & Hadiyane, A. (2013). Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Composites. Part B, Engineering, 45(1), 619-624. http://dx.doi.org/10.1016/j.compositesb.2012.04.068.

27. Maleque, M. A., Belal, F. Y., & Sapuan, S. M. (2007). Mechanical properties study of pseudo-stem banana fiber reinforced epoxy composite. Arabian Journal for Science and Engineering, 32(2B), 359-364.

28. Karam, G. (1994). Effect of fiber - fiber interaction on strength properties of short fiber reinforced cements. Journal of Composites Technology and Research, 16(2), 154-160. http://dx.doi.org/10.1520/CTR10405J.

29. Mohanty, A. K., Misra, M., & Drzal, L. T. (2001). Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces, 8(5), 313-343. http://dx.doi.org/10.1163/156855401753255422.

30. Agrawal, R., Saxena, N. S., Sharma, K. B., Thomas, S., & Sreekala, M. S. (2000). Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Materials Science and Engineering A, 277(1-2), 77-82. http://dx.doi.org/10.1016/S0921-5093(99)00556-0.

31. Katz, J. (1977). US Patent N° 4,060,386. Washington: U.S. Patent and Trademark Office.

32. Rout, J., Tripathy, S. S., Nayak, S. K., Misra, M., & Mohanty, A. K. (2000). Scanning electron microscopy study of chemically modified coir fibers. Journal of Applied Polymer Science, 79(7), 1169-1177. http://dx.doi.org/10.1002/1097-4628(20010214)79:7<1169::AID-APP30>3.0.CO;2-Q.

33. Rout, J., Misra, M., Tripathy, S. S., Nayak, S. K., & Mohanty, A. K. (2001). The influence of fibre treatment on the performance of coir–polyester composites. Composites Science and Technology, 61(9), 1303-1310. http://dx.doi.org/10.1016/S0266-3538(01)00021-5.

34. Shukla, S. R., & Pai, R. S. (2005). Adsorption of Cu (II), Ni (II) and Zn (II) on modified jute fibres. Bioresource Technology, 96(13), 1430-1438. PMid:15939269. http://dx.doi.org/10.1016/j.biortech.2004.12.010.

35. Manikandan Nair, K. C., Thomas, S., & Groeninckx, G. (2001). Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Composites Science and Technology, 61(16), 2519-2529. http://dx.doi.org/10.1016/S0266-3538(01)00170-1.

36. Paul, S., Nanda, P., & Gupta, R. (2003). PhCOCl-Py/basic alumina as a versatile reagent for benzoylation in solvent-free conditions. Molecules, 8(4), 374-380. http://dx.doi.org/10.3390/80400374.

37. Arfin, J. M., Mahbubur, R. M., Humayun, K., Md. Alamgir, K., Ahmed, F., Md. Abul, H., & Md. Abdul, G. (2012). Comparative study of physical and elastic properties of jute and glass fiber reinforced LDPE composites. International Journal of Scientific & Technology Research, 1(10). 68-72.

38. Vijaya Ramnath, B., Junaid Kohan, S., & Niranjan Raja, R. (2013). Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Materials and Design, 51, 357-366. http://dx.doi.org/10.1016/j.matdes.2013.03.102.

39. Florence, A. J., Kennedy, A. R., Shankland, N., Wright, E., & Al-Rubayi, A. (2000). Norfloxacin dehydrate. Acta Crystallographica, 56(Pt 11), 1372-1373. http://dx.doi.org/10.1107/S0108270100010933. PMid:11077303.

40. Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed.). NewYork: Wiley.

41. Paiva, J. M. F., & Frollini, E. (2006). Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: thermal analyses of fibers and composites. Macromolecular Materials and Engineering, 291(4), 405-417. http://dx.doi.org/10.1002/mame.200500334.

42. Pothan, L. A., Oommen, Z., & Thomas, S. (2003). Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and Technology, 63(2), 283-293. http://dx.doi.org/10.1016/S0266-3538(02)00254-3.

43. Klemm, D., Philipp, B., Heinze, T., Heinze, U., & Wagenknecht, W. (1998). Comprehensive cellulose chemistry fundamentals and analytical methods (Vol. 1, 2nd ed, pp. 1-20). New York: Wiley–VCH.

44. Hameed, N., Sreekumar, P. A., Francis, B., Yang, W., & Thomas, S. (2007). Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Composites. Part A, Applied Science and Manufacturing, 38(12), 2422-2432. http://dx.doi.org/10.1016/j.compositesa.2007.08.009.

45. Joseph, P. V., Mathew, G., Joseph, K., Groeninckx, G., & Thomas, S. (2003). Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Composites. Part A, Applied Science and Manufacturing, 34(3), 275-290. http://dx.doi.org/10.1016/S1359-835X(02)00020-9.

46. Chandra, R., Singh, S. P., & Gupta, K. (1999). Damping studies in fiber reinforced composites: a review. Composite Structures, 46(1), 41-51. http://dx.doi.org/10.1016/S0263-8223(99)00041-0.

47. Idicula, M., Malhotra, S. K., Joseph, K., & Thomas, S. (2005). Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Composites Science and Technology, 65(7-8), 1077-1087. http://dx.doi.org/10.1016/j.compscitech.2004.10.023.

48. Martínez-Hernández, A. L., Velasco-Santos, C., de-Icaza, M., & Castaño, V. M. (2007). Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Composites. Part B, Engineering, 38(3), 405-410. http://dx.doi.org/10.1016/j.compositesb.2006.06.013.

49. Qazvini, N. T., & Mohammadi, N. (2005). Dynamic mechanical analysis of segmental relaxation in unsaturated polyester resin networks: Effect of styrene content. Polymer, 46(21), 9088-9096. http://dx.doi.org/10.1016/j.polymer.2005.06.118.

50. Alves, N. M., Gomez Ribelles, J. L., Gomez Tejedor, J. A., & Mano, J. F. (2004). Viscoelastic Behavior of Poly(methyl methacrylate) Networks with Different Cross-Linking Degrees. Macromolecules, 37(10), 3735-3744. http://dx.doi.org/10.1021/ma035626z.

51. Gu, H. (2009). Dynamic mechanical analysis of the seawater treated glass/polyester composites. Materials & Design, 30(7), 2774-2777. http://dx.doi.org/10.1016/j.matdes.2008.09.029.

52. Raya, D., Sarkara, B. K., Dasb, S., & Ranab, A. K. (2002). Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. Composites Science and Technology, 62(7-8), 911-917. http://dx.doi.org/10.1016/S0266-3538(02)00005-2.

53. Mallarino, S., Chailan, J. F., & Vernet, J. L. (2009). Interphase study in cyanate/glass fibre composites using thermo mechanical analysis and micro-thermal analysis. Composites Science and Technology, 69(1), 28-32. http://dx.doi.org/10.1016/j.compscitech.2007.10.043.

54. Clark, R. L. Jr, Craven, M. D., & Kander, R. G. (1999). Nylon 66/poly(vinyl pyrrolidone) reinforced composites: 2 Bulk mechanical properties and moisture effects. Composites. Part A, Applied Science and Manufacturing, 30(1), 37-48. http://dx.doi.org/10.1016/S1359-835X(98)00083-9.

55. Goyanes, S. N., Marconi, J. D., Konig, P. G., Martin, M. D., & Mondragon, I. (2000). Dynamical properties of epoxy composites filled with quartz powder. Journal of Alloys and Compounds, 310(1-2), 374-377. http://dx.doi.org/10.1016/S0925-8388(00)00952-X.

56. Jayanarayanan, K., Thomas, S., & Joseph, K. (2008). Morphology, static and dynamic mechanical properties of in situ micro fibrillar composites based on polypropylene/poly (ethylene terephthalate) blends. Composites. Part A, Applied Science and Manufacturing, 39(2), 164-175. http://dx.doi.org/10.1016/j.compositesa.2007.11.008.

57. Kaddami, H., Dufresne, A., Khelifi, B., Bendahou, A., Taourirte, M., Raihane, M., Issartel, N., Sautereau, H., Gérard, J.-F., & Sami, N. (2006). Short palm tree fibers – Thermoset matrices composites. Composites. Part A, Applied Science and Manufacturing, 37(9), 1413-1422. http://dx.doi.org/10.1016/j.compositesa.2005.06.020.

58. Pothan, L. A., Thomas, S., & Groeninckx, G. (2006). The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Composites. Part A, Applied Science and Manufacturing, 37(9), 1260-1269. http://dx.doi.org/10.1016/j.compositesa.2005.09.001.

59. Mallarino, S., Chailan, J. F., & Vernet, J. L. (2005). Glass fibre sizing effect on dynamic mechanical properties of cyanate ester composites I. Single frequency investigations. European Polymer Journal, 41(8), 1804-1811. http://dx.doi.org/10.1016/j.eurpolymj.2005.02.022.

60. Singh, V., Tiwari, A., Tripathi, D. N., & Sanghi, R. (2004). Grafting of poly acrylonitrile onto guar gum under microwave irradiation. Journal of Applied Polymer Science, 92(3), 1569-1575. http://dx.doi.org/10.1002/app.20099.

61. Singh, V., Tripathi, D. N., Tiwari, A., & Sanghi, R. (2004). Microwave promoted synthesis of chitosan-graft-poly (acrylonitrile). Journal of Applied Polymer Science, 95(4), 820-825. http://dx.doi.org/10.1002/app.21245.

62. Kaith, B. S., Singha, A. S., & Gupta, S. K. (2003). Graft copolymerization of Flax fibres with binary vinyl monomer mixtures and evaluation of swelling, moisture absorbance and thermal behavior of the grafted fibres. Journal of Polymer Materials, 20, 195-199.

63. Princi, E., Vicini, S., Pedemonte, E., Mulas, A., Franceschi, E., Luciano, G., & Trefiletti, V. (2005). Thermal analysis and characterisation of cellulose grafted with acrylic monomers. Thermochimica Acta, 425(1-2), 173-179. http://dx.doi.org/10.1016/j.tca.2004.07.001.

64. Kaith, B.S., Singha, A.S., & Kalia, S. (2006). Mechanical properties of Raw Flax and Flax- g-poly (MMA) reinforced phenol-formaldehyde composites. International Journal of Plastics Technology, 10, 572-587. http://dx.doi.org/10.1007/s12588-009-0045-3.

65. Geethamma, V. G., Joseph, R., & Thomas, S. (1995). Short coir fiber‐reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. Journal of Applied Polymer Science, 55(4), 583-594. http://dx.doi.org/10.1002/app.1995.070550405.
 

5b7c1d0a0e8825ae23896e53 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections